Geotechnical Data Report

SAWS Mitchell Lake Wetland Project San Antonio, Texas

Arias Project No. 2017-698

Prepared For: Alan Plummer Associates, Inc.

June 11, 2018

13581 Pond Springs Road, Suite 210, Austin, Texas 78729 • Phone: (512) 428-5550 • Fax: (512) 428-5525

June 11, 2018 Arias Project No. 2017-698

VIA Email:

tnoack@apaienv.com

Mr. Timothy Noack, P.E. Alan Plummer Associates, Inc. 1777 NE Loop 410, Suite 500 San Antonio, Texas 78217

RE: Geotechnical Data Report SAWS Mitchell Lake Wetland Project San Antonio, Texas

Dear Mr. Noack,

Arias & Associates, Inc. (Arias) is pleased to submit this Geotechnical Data Report (GDR) for the above referenced project. Our services were performed according to the signed agreement for subconsultant services between Alan Plummer Associates, Inc. and Arias & Associates, Inc. dated November 17, 2017.

The purpose of this geotechnical study was to obtain subsurface and groundwater information along the proposed embankment dam and wetland area. The scope included a field investigation phase, laboratory testing, and preparation of this data report. It should be noted that our scope of services was limited to providing geotechnical data based upon our field and laboratory test results.

We sincerely appreciate the opportunity of working with you on this project and look forward to our continued association throughout final design and construction phases. Please do not hesitate to contact us about this report, or if we can be of further service.

Sincerely, ARIAS GEOPROFESSIONALS, INC. TBPE Registration No. F-32

y D. Shepherd, P.E., D.GE Senior Geotechnical Engineer 6-12-18

Christopher M. Szymezak/P.E. Senior Geotechnical Engineer

TABLE OF CONTENTS

<u>Page</u>

INTRODUCTION	.1
FIELD EXPLORATION	.1
LABORATORY TESTING	.3
SITE AND SUBSURFACE CONDITIONS	.4
Area Geology	.4
Site Stratigraphic and Engineering Properties	.5
Groundwater Occurrence	.6
GENERAL COMMENTS	.7
Subsurface Variations	.7
Standard of Care	.7

Appendices

APPENDIX A: FIGURES	A
APPENDIX B: SOIL BORING LOGS AND KEY TO TERMS	В
APPENDIX C: LABORATORY AND FIELD TEST PROCEDURES	C
APPENDIX D: SIEVE ANALYSIS TEST RESULTS	D
APPENDIX E: ONE-DIMENTIONAL CONSOLIDATION TEST RESULTS	E
APPENDIX F: DIRECT SHEAR TEST RESULTS	F
APPENDIX G: ONE-DIMENTIONAL CONSOLIDATION TEST RESULTS	G
APPENDIX H: CONSOLIDATED UNDRAINED TRIAXIAL TEST RESULTS	H
APPENDIX I: ASFE INFORMATION – GEOTECHNICAL REPORT	I
APPENDIX J: PROJECT QUALITY ASSURANCE	J

TABLE OF CONTENTS

<u>Page</u>

Tables

Table 1: Boring Summary Table	2
Table 2: Laboratory Test Name, Method and Log Designation	
Table 3: Generalized Subsurface Conditions and Engineering Properties	5
Table 4: Water -Level Observations in boreholes	6

INTRODUCTION

The results of our Geotechnical Field Operations and Laboratory Testing Program for the proposed Mitchell Lake Wetland Project are presented in this Geotechnical Data Report (GDR). The project will consist of constructing wetlands at the downstream of the Mitchell Lake dam to improve the quality of discharge from Mitchell Lake. The project will also include causing necessary improvements to the dam to manage stormwater within the lake.

The geotechnical study was authorized on November 17, 2017 by Mr. Timothy Noack, P.E. with signing of an agreement for subconsultant services between Alan Plummer Associates, Inc. and Arias & Associates, Inc. The agreement outlines the authorized and agreed upon scope of services.

The purpose of this geotechnical investigation is to present geotechnical findings and results of analyses. This Geotechnical Data Report (GDR) presented herein is a compilation of the geotechnical field and laboratory data collected for the project.

FIELD EXPLORATION

The field exploration consisted of drilling twenty (20) test borings, designated B-101 through B-120, to depths ranging from 15- to 40- ft at the project site. Approximate boring locations are shown on the *Boring Location Plan* presented on Figure 2 in Appendix A. Boring locations should be considered approximate. A summary of boring information is presented in the following table.

Boring Designation	Date Drilled	Drill Depth, ft	GPS Latitude	GPS Longitude	Location					
		Mitchell L	ake Dam and S	pillway						
B-101	1/23/2018	40	29.27156	-98.49360	Top of Dam					
B-102	1/23/2018	40	29.27066	-98.49212	Top of Dam					
B-103	1/19/2018	40	29.26998	-98.49208	South of Dam					
B-104	1/22/2018	40	29.27102	-98.49085	Top of Dam					
B-105	1/22/2018	40	29.27135	-98.48975	Top of Dam					
B-106	1/23/2018	40	29.27048	-98.48941	South end of Spillway					
B-107	1/22/2018	40	29.27154	-98.48857	Top of Dam					
	Wetlands	s Downstream	n of Mitchell Lak	ke & Pilot Wetland	ds					
B-108	3/14/2018	15	29.27109	-98.48788	Wetlands					
B-109	1/22/2018	15	29.27507	-98.49645	Pilot Wetland					
B-110	3/9/2018	15	29.26880	-98.49209	Wetlands					
B-111	3/9/2018	15	29.26745	-98.49092	Wetlands					
B-112	3/9/2018	15	29.26761	-98.48588	Wetlands					
B-113	3/9/2018	15	29.26497	-98.48504	Wetlands					
B-114	3/9/2018	15	29.26309	-98.48450	Wetlands					
B-115	3/9/2018	15	29.26115	-98.48228	Wetlands					
B-116	3/9/2018	15	29.25949	-98.47930	Wetlands					
B-117	3/9/2018	15	29.26491	-98.48164	Wetlands					
B-118	3/9/2018	15	29.26302	-98.47889	Wetlands					
B-119	3/14/2018	15	29.26162	-98.47674	Wetlands					
B-120	3/9/2018	15	29.26447	-98.47785	Wetlands					
Groundwater was	s not encountered	I in the borings a	at the time of drillin	ng.						

Table 1: Boring Summary Table

The borings were sampled using seamless push tubes for cohesive strata (ASTM D1587) and a split-barrel sampler while performing the Standard Penetration Test (SPT) (ASTM D1586).

Boring depths were measured from below the existing surface elevation at the time of drilling. A truck-mounted drill rig using dry and air rotary drilling methods together with the sampling tool noted was used to obtain samples. After completion of drilling, the boreholes were backfilled using the auger cuttings and bentonite mixture.

Detailed descriptions of subsurface conditions encountered in the borings are presented on the *Boring Logs* included in Appendix B. Sample type and interval are included on the individual soil boring logs at the respective sample depth. An Arias representative visually logged each recovered sample and selected representative samples for laboratory testing. *Site Photographs* of the drilling operation are presented in Appendix A, Figure 3.

SPT N-values for those intervals where the sampler was advanced for a 12-inch penetration after the initial 6-inch seating are shown on the individual boring logs included in Appendix B.

The GPS coordinates (horizontal datum NAD 83) obtained using a hand-held GPS device are shown on the boring logs and should be considered approximate. Drilling and groundwater notes, obtained at the time of boring, are also shown on the boring logs.

Soil classifications and borehole logging were conducted during the exploration by one of our field engineering technicians working under the supervision of our Geotechnical Engineer. Final soil classifications, as seen on the boring logs included in Appendix B, were determined in the laboratory based on laboratory and field test results and applicable ASTM procedures. The key to the terms and symbols used on the logs and the field test procedures is also included in Appendix B, following the boring logs.

LABORATORY TESTING

Arias performed soil mechanics laboratory tests on selected samples to aid in soil classification and to determine select engineering properties. The laboratory testing assignments were determined by Arias in general accordance with the proposed work scope. The test name and TxDOT or ASTM test methods are presented and summarized subsequently in Table 2:

Test Name	Test Method	Log Designation
Water (moisture) content of soil and rock by mass	ASTM D 2216	MC
Liquid limit, plastic limit and plasticity index of soils	ASTM D 4318	LL, PL, PI
Particle Size Analysis of Soils	ASTM D 422	
Amount of Materials in Soils Finer than the (No. 200) Sieve	ASTM D 1140	-200
Multi-Stage Consolidated Undrained Triaxial Compression	ASTM D4767	
Direct shear of soil under consolidated-drained conditions	ASTM D 3084	
1-Dimensional Consolidation Properties of Soils Using Incremental Loading	ASTM D 2435	
Hydraulic Conductivity	ASTM D5084	

 Table 2: Laboratory Test Name, Method and Log Designation

The results of Atterberg Limits (ASTM D4318) and grain size analyses (ASTM D422), are shown on the boring logs at the respective sample depth, and presented in Appendix B. A Graphical presentation of the sieve analyses is presented in Appendix C. The results of the remaining tests are provided in the subsequent report sections and/or respective appendices of this report.

To evaluate one-dimensional (1-D) consolidation properties of the clay soils, incremental loading tests were performed on four (4) sample specimens in general accordance with ASTM D 2435. The results are presented as curves of vertical effective stress vs. axial strain in Appendix D.

To evaluate drained strength parameters, direct shear testing under consolidated drained testing was performed on four (4) recovered samples. The testing was performed on 3 separate specimens for each sample (i.e. multi-sample tests). Laboratory results for the direct shear testing are included in Appendix E.

To evaluate undrained shear strength parameters, multi-stage triaxial compression testing under consolidated-undrained conditions were performed on three (3) recovered samples. For each soil sample, the testing was performed on 3 separate specimens at 3 different confining stresses (i.e. multi-sample tests). The Laboratory results for the triaxial testing are included in Appendix F.

Falling-head hydraulic conductivity testing was performed on two (2) recovered samples in general accordance with ASTM D 2435. The tests were continued until a steady value of hydraulic conductivity was reached for each soil sample. Laboratory results for the hydraulic conductivity testing are included in Appendix G.

The soil laboratory testing for this project was done in accordance with applicable ASTM procedures with the specifications and definitions for these tests listed in Table 2. Remaining soil samples recovered from this exploration will be routinely discarded following submittal of this report.

SITE AND SUBSURFACE CONDITIONS

Geologic, generalized stratigraphic and groundwater conditions at the Project site are discussed in the following sections. The subsurface stratigraphic and groundwater conditions are based on conditions encountered at the boring locations at the time of exploration and to the depths explored.

Area Geology

According to the Geologic Map of Texas, San Antonio, the site is mapped as being underlain by the Fluviatile terrace deposits (Qt). Fluviatile terrace deposits are stream bed deposits typically consisting of clays, sands, silts, and gravels. Such deposits can contain point bars, cutbanks, oxbows, and abandoned channel segments associated with variations in stream bed activity. As a result, soil profiles in terrace deposit areas may vary greatly over relatively short distances. Key

geotechnical engineering concerns for development supported on this formation are the expansive nature of the clays, the consistency or relative density of the deposits, and the absence/presence as well as thickness of potentially water-bearing gravels. Due to the alluvial nature of these deposits, significant variations can occur over short distances. A *Geologic Map* is presented on Figure 4 in Appendix A.

Site Stratigraphic and Engineering Properties

The general stratigraphic conditions at the boring locations are provided in Table 3. The presence and thickness of the various subsurface materials can be expected to vary away from and between the exploration locations. The descriptions conform to the Unified Soils Classification System.

Stratum	Depth, ft.	Material Type	PI range	No. 200 range	PP Range, tsf	N range
FILL	0 – 6 to 6 – 11	Fill: Fat Clay (CH); Lean Clay, Sandy Lean Clay (CL); stiff to hard; dark to light brown, tan, gray; with trace gravel, trace calcareous deposits, ferrous stains	23 – 54	84 – 97	1.25 – 4.5+	11 – 48
CLAYEY MATERIAL	0 – 38 to 2 – 40	Fat Clay (CH); Lean Clay, Lean Clay with Sand, Sandy Lean Clay (CL); soft to hard; dark to light gray, dark to light brown, reddish brown, tan; with ferrous stains, sand seams (Not noted at B-108)	18 – 40	61 – 98	0.25 – 4.5+	10 – 50/3"
GRANULAR MATERIAL	0 – 4 to 4 – 15	Clayey Sand, Clayey Sand with Gravel (SC); loose to very dense; tan, brown; with calcareous nodules, ferrous stains (Noted at B-108 & B-109)	14 – 19	26 – 43	4.5+	10 – 50/2"

 Table 3: Generalized Subsurface Conditions and Engineering Properties

Where:		-	Depth from existing ground surface at the time of geotechnical study, feet
	PI	-	Plasticity Index, %
	-200	-	Percent passing U.S. Standard No. 200 sieve, %
	Ν	-	Standard Penetration Test, N-value, in blows per foot (bpf)
	PP	-	Pocket Penetrometer, tsf
	UC	-	Unconfined Compressive Strength, tsf
	Avg	-	Average value
	Тур	-	Typical value
	BTD	-	Boring Termination Depth

Soil conditions may vary between the sample boring locations. Transition boundaries or contacts, noted on the boring logs to separate soil types, are approximate. Actual contacts may be gradual and vary at different locations. If conditions encountered during construction indicate more

variation than established as a result of this study, we should be contacted to evaluate the significance of the changed conditions relative to our recommendations.

Groundwater Occurrence.

A dry soil sampling method was used to obtain the soil samples. Groundwater was encountered during drilling only in borings B-101, B-105 and B-106. However, delayed water level readings taken after 24-hours indicated groundwater in borings B-101 through B-107, except for B-103. The groundwater levels observed in the borings during drilling and at completion of drilling or thereafter, are presented in Table 4.

Boring No.	Depth Drilled,	Groundwater First Encountered	Groundwater at 24-hrs after Completion of drilling
	feet	Depth, feet	Depth, feet
B-101	40	13.0	11.3
B-102	40		15.6
B-103	40		
B-104	40		11.8
B-105	40	13.0	14.0
B-106	40	23.0	16.6
B-107	40		17.4

Table 4: Water -Level Observations in boreholes

Granular soils (i.e. sand as well as sandy and/or gravelly soils) with the potential to store and transmit groundwater were encountered as part of this study. Although groundwater was encountered only in borings B-101, B-102 and B-104 through B-107 at the time of this study, it is possible that the more granular soils found may be water bearing at the time of construction. Groundwater levels should be verified immediately prior to construction.

Pockets or seams of calcareous deposits, gravel, sand, silt or open fractures and joints can retain and/or permit "perched" groundwater seepage. "Perched" groundwater flow or seepage may also occur at strata interfaces, particularly at clay/gravel, clay/sand, fill/natural soil and rock interfaces.

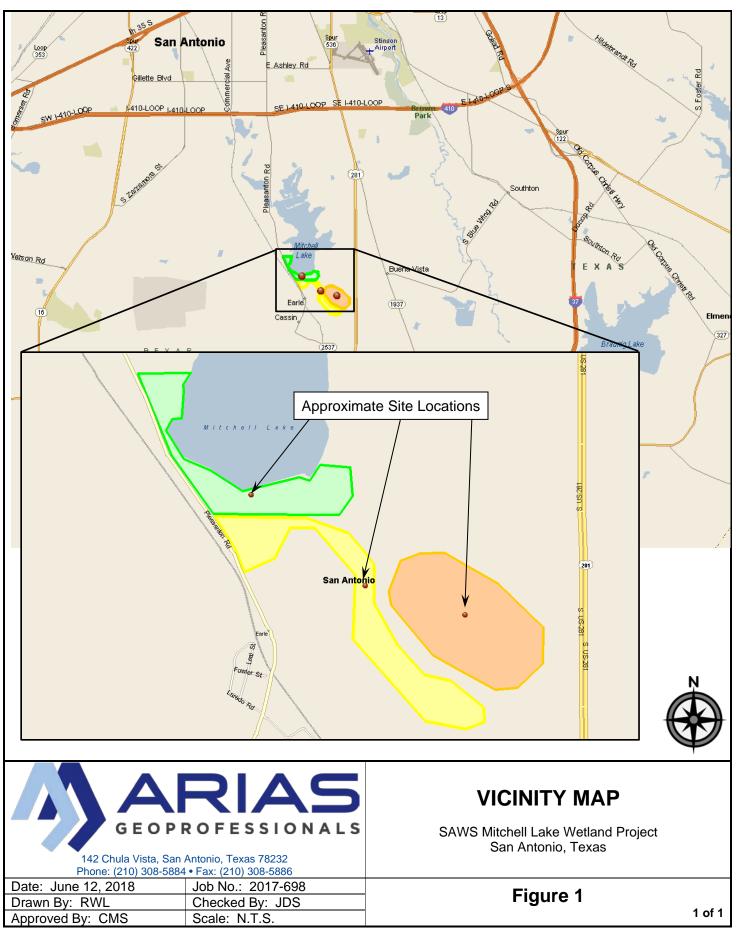
It should be noted that groundwater levels at the time of construction may differ from the observations obtained during the field exploration because perched groundwater is subject to seasonal conditions, recent rainfall, flooding, drought or temperature affects. Granular soils, such as sands and sandy soils, can readily transmit subsurface water. Groundwater levels should be verified immediately prior to construction.

The installation of temporary piezometers (observation wells) can be performed to obtain more accurate groundwater data. Additionally, pump and recharge tests can be performed using the piezometers to aid in estimating groundwater seepage rates. Subsurface water readings and seepage rates will generally provide an indication of groundwater conditions at that respective location and time. If needed, this information can be used to assist the contractor in developing construction dewatering plans. We should note that installing piezometers and performing groundwater testing was beyond our authorized scope of services for this project. We can provide these services if desired.

Due to the location of the proposed construction within a lake and floodplain area, the presence of groundwater should be anticipated during excavations. Both temporary and permanent groundwater controls will be necessary for proper embankment dam construction and suitable long-term performance. Temporary groundwater controls are typically the responsibility of the contractor and may consist of sumping and pumping and/or deep wells and well points.

GENERAL COMMENTS

This report was prepared as an instrument of service for this project exclusively for the use of Mr. Timothy Noack, P. E, Alan Plummer Associates, Inc. and their design team. If the development plans change relative to layout, size or anticipated loads or if different subsurface conditions are encountered, we should be informed and retained to ascertain the impact of these changes on our recommendations. We cannot be responsible for the potential impact of these changes if we are not informed.


Subsurface Variations

Soil and groundwater conditions may vary between the sample boring locations. Transition boundaries or contacts, noted on the boring logs to separate soil/rock types, are approximate. Actual contacts may be gradual and vary at different locations. The contractor should verify that similar conditions exist throughout the proposed area of excavation. If different subsurface conditions or highly variable subsurface conditions are encountered during construction, we should be contacted to evaluate the significance of the changed conditions relative to our recommendations.

Standard of Care

Subject to the limitations inherent in the agreed scope of services as to the degree of care and amount of time and expenses to be incurred, and subject to any other limitations contained in the agreement for this work, Arias has performed its services consistent with that level of care and skill ordinarily exercised by other professional engineers practicing in the same locale and under similar circumstances at the time the services were performed. Information about this geotechnical report is provided in the ASFE publication included in Appendix H.

APPENDIX A: FIGURES

CLAIMER: This drawing is for illustration only and should not be used for design or construction purposes. All locations are appro

© 2018 by Arias

	142	Chula Vista, San Antonio, Texas 78232			
		ne: (210) 308-5884 • Fax: (210) 308-5886	Date: June 12, 2018	Job No.: 2017-698	
REVI	SIONS:		Drawn By: SBS	Checked By: JDS	
lo.:	Date:	Description:	Approved By: CMS	Scale: N.T.S.	
			FIG	ure 2	
					1 of 1

Photo 1 – View looking at Boring 103 drilling operations.

Photo 2 – View looking at Boring 105 drilling operations.

SITE PHOTOS

SAWS Mitchell Lake Wetland Project San Antonio, Texas

Appendix A

APPENDIX B: SOIL BORING LOGS AND KEY TO TERMS

Project: Mitchell Lak San Antonio		Ś	Sampling) Date	e: 1/2	3/18				
		C	Coordina	tes:	N2	9°16'	17.6"	W98	°29'36.8	8"
Location: See Boring		E Depth	Backfill:			ttings				
Soil Des FILL: FAT CLAY (CH), very stiff	-	(ft)	SN	wc	PL	LL	PI	PP	Ν	-200
FILL. FAT CLAT (CH), VERY SUIT	, blown		SS	24					21	
- tan and gray below 2'										
			SS	23	24	78	54		23	97
- hard below 4'		5	т	23				4.5		
FILL: LEAN CLAY (CL), stiff, da	irk brown		т	24	18	47	29	2.0		95
		10	Т	25				1.25		
FAT CLAY (CH), soft, dark gray	, with ferrous stains		Т	30	20	50	30	0.25		92
	Ţ									
	$\overline{\nabla}$	//								
LEAN CLAY (CL), stiff, gray and	d brown		SS	23					12	
		15								
- very stiff from 18' to 20'			т	20	17	46	29	3.0		96
		20								
â										
-01.GL										
2013										
LIBRAI		25	Т	23				1.0		
01.GDT										
SSA12-(//// <u>}</u>								
المعلم - very stiff below 28'		//////////////////////////////////////								
continu	ied)	30	SS	27					30	
Groundwater Data: First encountered during drilling: 13-ft dep	h Nomenclature Used o	on Boring L		1	1	1	1			
After : 11.3-ft depth (30.3-ft open borehole depth)	Split Spoon (SS)	Thin-walled	l tube (T)		$\overline{\mathbf{Y}}$			ountered ater read	during d ling	rilling
Field Drilling Data: Coordinates: Hand-held GPS Unit Logged By: R. Arizola	WC = Water Content (%)		Blow Cou						-	
Driller: Tero Drilling Equipment: Truck-mounted drill rig	PL = Plastic Limit LL = Liquid Limit Pl = Plasticity Index	-200 = % P	assing #20	0 Siev	е					
 very stiff below 28' (continut Groundwater Data: First encountered during drilling: 13-ft dept After : 11.3-ft depth (30.3-ft open borehole depth) Field Drilling Data: Coordinates: Hand-held GPS Unit Logged By: R. Arizola Driller: Tero Drilling Equipment: Truck-mounted drill rig Single flight auger: 0 - 40 ft 	PI = Plasticity Index PP = Pocket Penetrometer (tsf)									

Boring Log No. B-101 (continued)

Coordinates: N29°16'17.6" W98°29'36.8" Location: See Boring Location Plan Backfill: Cuttings Soil Description Pepth (ft) SN WC PL LL PI PP N LEAN CLAY (CL), stiff, gray and brown (continued) Image: Continued of the state of	Projec	Mitchell Lake We San Antonio, Tex			S	ampling	Date	e: 1/2	3/18				
Soil Description Depth (ft) SN WC PL LL PI PP N LEAN CLAY (CL), stiff, gray and brown (continued)					С	oordina	tes:	N29	9°16'	17.6"	W98	°29'36.	8"
Item (ft)	Locatio	on: See Boring Loca	tion Plan			ackfill:		Cut	ttings				
LEAN CLAY (CL), stiff, gray and brown (continued) T 20 3.25 FAT CLAY (CH), very stiff, tan T 20 3.25 T 20 T 21 18 50 32 3.5		Soil Descript	ion		Depth (ff)	SN	wc	PL	LL	ΡI	PP	Ν	-20
T 20 3.25 35 T 21 18 50 32 3.5	LEAN CLAY (CL), stiff, gray and bro	wn <i>(continued)</i>										
T 20 3.25 35 T 21 18 50 32 3.5													
T 20 3.25 35 T 20 3.25 T 21 18 50 32 3.5													
<u>35</u> T 21 18 50 32 3.5	FAT CLAY (CH)	, very stiff, tan											
T 21 18 50 32 3.5						Т	20				3.25		
40													
40													
40													
40						-	21	10	50	22	9 E		9
							21	10	50	32	3.5		"
	3orehole termin	ated at 40 feet			40								
Groundwater Data: Nomenclature Used on Boring Log	Groundwater Data:		Nomenclature	e Used on B	oring Lo	g							
After : 11.3-ft depth (30.3-ft open borehole Split Spoon (SS) Thin-walled tube (T)	First encountered du After : 11.3-ft depth (ing drilling: 13-ft depth 30.3-ft open borehole							Wate	renco	puntered	during c	drillin
First encountered during drilling: 13-ft depth After : 11.3-ft depth (30.3-ft open borehole depth) Field Drilling Data:	First encountered du After : 11.3-ft depth (depth) Field Drilling Data:												drillin
First encountered during drilling: 13-ft depth After : 11.3-ft depth (30.3-ft open borehole depth) Field Drilling Data: Coordinates: Hand-held GPS Unit Lorgerd Ry: R. Arizola WC = Water Content (%) N = SPT Blow Count	First encountered du After : 11.3-ft depth (depth) Field Drilling Data: Coordinates: Hand-h	eld GPS Unit	Split Spoon (SS) WC = Water Content (∎ т %)	nin-walled N = SPT	tube (T) Blow Cou		Ţ					drillin
First encountered during drilling: 13-ft depth After : 11.3-ft depth (30.3-ft open borehole depth) Field Drilling Data: Coordinates: Hand-held GPS Unit Logged By: R. Arizola WC = Water Content (%) N = SPT Blow Count	First encountered du After : 11.3-ft depth (depth) Field Drilling Data: Coordinates: Hand-h Logged By: R. Arizola	eld GPS Unit	Split Spoon (SS) WC = Water Content (⁴ PL = Plastic Limit	∎ т %)	nin-walled N = SPT	tube (T) Blow Cou		Ţ					drillin
First encountered during drilling: 13-ft depth After : 11.3-ft depth (30.3-ft open borehole depth) Field Drilling Data: Coordinates: Hand-held GPS Unit Lorged Ry: P. Arizolo WC = Water Content (%) N = SPT Blow Count	First encountered du After : 11.3-ft depth (depth) Field Drilling Data: Coordinates: Hand-h Logged By: R. Arizola Driller: Tero Drilling Equipment: Truck-mo	eld GPS Unit a punted drill rig	Split Spoon (SS) WC = Water Content (PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index	■ T %) -2	nin-walled N = SPT	tube (T) Blow Cou		Ţ					drillin

Γ	Project: Mitchell Lake Wet San Antonio, Texa		Sai	mpling	Date	: 1/2	3/18				
4			Co	ordina	tes:	N29	9°16'	14.4'	' W98'	29'31.7	7''
	Location: See Boring Location	on Plan		ckfill:		Cut	tings				
	Soil Description		Depth (ft)	SN	WC	PL	LL	ΡI	PP	Ν	-200
	FILL: LEAN CLAY (CL), very stiff to ha gravel	ard, brown, with trace		SS	15					27	
	- with trace calcareous nodules from 4	4' to 6'	5	SS T	15 19	19	48	29	4.25	28	95
	- becomes light brown with trace ferro	ous stains below 6'		Т	19				4.5+		
	LEAN CLAY (CL), very stiff, dark gray	and brown with	10	т	18				4.5+		
	ferrous stains	and brown, with		SS	25	19	44	25		21	94
	- firm from 13' to 15'		15	т	25				0.25		
	- stiff from 18' to 30'	Ţ	10 	SS	27					15	
RIASSA12-01.GDT,LIBRARY2013-01.GLB)			25	т	25	16	40	24	1.0		94
SA13-02, A	- becomes gray and brown below 28' (continued)		30	Т	21				1.5		
2017-698.GPJ 5/31/18 (BORING LOG SA13-02, ARIASSA12-01.GDT, LIBRARY2013-01.	Groundwater Data: During drilling: Not encountered After : 15.6-ft depth (32.8-ft open borehole depth) Field Drilling Data: Coordinates: Hand-held GPS Unit Logged By: R. Arizola Driller: Tero Drilling Equipment: Truck-mounted drill rig	Nomenclature Used o Split Spoon (SS) NC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer (tsf)		be (T) ow Cou		-	Delay	yed wa	ater read	ing	

Boring Log No. B-102 (continued)

-			<u> </u>										
		Project: Mitchell Lake W San Antonio, Te				npling							
		Location: See Boring Loca	ation Plan		Coo Bac	rdinat kfill:	tes:		9°16' ttings		W98'	29'31.7	7"
Ì		Soil Descrip		Dept (ft)	h	SN	WC	PL	LL	PI	PP	Ν	-200
	ferrous s	-AY (CL), very stiff, dark gr tains <i>(continued)</i>		35		SS	25					30	
		Y (CH), very stiff, tan e terminated at 40 feet		40		т	24				3.0		
2017-698.GPJ 5/31/18 (BORING LOG SA13-02,ARIASSA12-01.GDT,LIBRARY2013-01.GLB)	Groundwa		Nomenclature Use										
017-698.GPJ 5/31/18 (BORING L	During drill After : 15.6 depth) Field Drilli Coordinate Logged By Driller: Ter Equipment	ing: Not encountered -ft depth (32.8-ft open borehole ng Data: s: Hand-held GPS Unit : R. Arizola	WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer	■ Thin-wall N = SF -200 = %	ed tub PT Blo	w Cour	nt 0 Siev	₽ e	Delay	yed wa	iter read	ing	
Ň													

	Project: Mitchell Lake W San Antonio, Te	/etland exas	Sa	Impling	Date	: 1/1	9/18				
			Co	ordina	tes:	N2	9°16'	11.9"	' W98°	29'31.8	5"
	Location: See Boring Loc	ation Plan		ckfill:		Cu	tings				
	Soil Descrip		Depth (ft)	SN	WC	PL	LL	PI	PP	Ν	-200
	LEAN CLAY (CL), very stiff, brown	to light brown		SS	22					24	
	- hard below 2'			т	12				4.5+		
	- becomes tan below 4.5'		5	т	13				4.5+		
				т	13	17	39	22	4.5+		95
	- sandy from 8' to 12'		10	ss	17					30	
				ss	18					49	
	- very stiff from 13' to 18'		15	т	20	17	39	22	2.5		96
	- firm from 18' to 23'		20	т	24				0.75		
2017-698.GPJ 5/31/18 (BORING LOG SA13-02, ARIASSA12-01.GDT, LIBRARY2013-01.GLB)	- stiff below 23'		25	SS	25					10	
-02,ARI	FAT CLAY (CH), very stiff, tan			т					2.5		
3 SA13	(continued)		30						2.0		
30RING LOC	Groundwater Data: During drilling: Not encountered Field Drilling Data:	Nomenclature Used on Split Spoon (SS)	Boring Log								
17-698.GPJ 5/31/18 (E	Coordinates: Hand-held GPS Unit Logged By: R. Arizola Driller: Tero Drilling Equipment: Truck-mounted drill rig Single flight auger: 0 - 38.8 ft	WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer (tsf)	N = SPT B ** = Blow (Peneti -200 = % Pas	Counts D ration	uring S)				
20		1									

Arias Geoprofessionals

Boring Log No. B-103 (continued)

	Project: Mitchell Lake W San Antonio, Te	Vetland exas		Sampling	g Date	e: 1/1	9/18	-			
	Location: See Boring Loca	ation Plan		Coordina Backfill:	tes:		9°16' ttings		W98	°29'31.8	5"
	Soil Descrip		Deptl (ft)	h SN	wc				PP	Ν	-200
FAT CL	AY (CH), very stiff, tan <i>(con</i>		(π)								
- hard b	elow 33', with gypsum cryst	als from 33' to 35'	35	T	20	18	54	36	4.25		97
_	e terminated at 38.8 feet			SS	21					**50/4"	
SA13-02,ARIASSA12-01.GDT,LIBRARY2013-01.GLB)											
IG SA13-02, ARIASSA12											
្ន Groundw ឲ្យ During dr	ater Data: lling: Not encountered	Split Spoon (SS)	ed on Boring I Thin-walle								
Logged B Driller: Te Equipmen	es: Hand-held GPS Unit y: R. Arizola	WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit Pl = Plasticity Index PP = Pocket Penetrometer	N = SP ** = Blc Pe -200 = %	T Blow Cou W Counts E netration Passing #20	ouring S		g				

	Project: Mitchell Lake We San Antonio, Tex	etland cas	S	Sam	npling	Date	: 1/2	2/18				
			C	200	ordina	tes:	N2	9°16'	15.7'	' W98º	29'27.	1''
	Location: See Boring Loca	tion Plan		Bac	kfill:		Cu	ttings	5			
	Soil Descript		Depth (ft)		SN	wc	PL	LL	PI	PP	Ν	-200
	FILL: LEAN CLAY (CL), very stiff, br	own, with trace gravel			SS	19					24	
	- light brown below 2'											
					SS	13	19	44	25		26	93
	- hard from 4' to 6'		5		т	13				4.5+		
					Т	22				3.0		
	- stiff below 8				-		4.0	45	07			
			10		Т	21	18	45	27	1.5		88
	- stiff from 10' to 15' LEAN CLAY (CL), firm to stiff, dark g	101			SS	26					11	
		nay I										
	- light gray below 13'				Ŧ	26	40	40	20	0.75		0.2
			15		Т	20	18	46	28	0.75		93
	- very stiff to hard from 18'											
			20		SS	26					27	
3)												
-01.GLE												
RY2013												
F,LIBRA			25		SS	23					37	
-01.GD												
ASSA12												
-02,ARI					т	27	16	43	27	1.0		94
G SA13	(continued)		30		•							
ING LO	Groundwater Data: During drilling: Not encountered After : 11.8-ft depth (30.3-ft open borehole	Nomenclature Used on Split Spoon (SS)	Boring Lo Thin-walled	-	e (T)							
18 (BOR	depth) Field Drilling Data:				. /		Ţ	Dela	yed wa	ater read	ing	
J 5/31/1	Coordinates: Hand-held GPS Unit Logged By: R. Arizola Driller: Tero Drilling	WC = Water Content (%) PL = Plastic Limit	N = SPT -200 = % Pa				е					
2017-698.GPJ 5/31/18 (BORING LOG SA13-02,ARIASSA12-01.GDT,LIBRARY2013-01.GLB)	Equipment: Truck-mounted drill rig Single flight auger: 0 - 40 ft	LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer (tsf)										
2017												

Boring Log No. B-104 (continued)

	Project: Mitchell Lake W San Antonio, Te				npling 				<u> </u>		2007	
	Location: See Boring Loca	ation Plan		Bad	ordina ckfill:	tes:		9°16' ttings		W98	°29'27.	1''
	Soil Descrip		Dept (ft)	h	SN	wc	PL	LL	PI	PP	Ν	-200
	CLAY (CL), firm to stiff, dark stiff below 33'	gray <i>(continued)</i>	35	· · · · · · · · · · · · · · · · · · ·	т	21				3.0		
			40		Т	18				3.25		
2017-698.GPJ 5/31/18 (BORING LOG SA13-02.ARIASSA12-01.GDT.LIBRARY2013-01.GLB) Dining T Dining T Dining T Single L Single J	watar Data:											
GT STREAM	Iwater Data: drilling: Not encountered 1.8-ft depth (30.3-ft open borehole rilling Data: hates: Hand-held GPS Unit By: R. Arizola Tero Drilling ent: Truck-mounted drill rig light auger: 0 - 40 ft	Nomenclature Usec Split Spoon (SS) WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer (ts	N = SF -200 = %	ed tul	ow Cou	nt 10 Siev	⊻ e	Dela	yed wa	ater read	ling	

Project: Mitchell Lake Wetland San Antonio, Texas		Sa	mpling	Date	e: 1/2	2/18				
Location: See Boring Location Plan			ordina ckfill:	tes:		9°16' ttings		' W98'	°29'23.	1"
Soil Description	Deptl (ft)	h	SN	wc			PI	PP	Ν	-20
FILL: LEAN CLAY (CL), very stiff, tan and gray, with trace gravel			SS	21					15	
- hard below 2'										
		•	SS	17					48	
FILL: LEAN CLAY (CL), hard, dark brown, with ferrous stains	5		т	15	16	42	26	4.5+		86
			т	13				4.5+		
- becomes light brown and stiff below 7'			-	10	47	40				
	10		Т	18	17	40	23	2.0		84
LEAN CLAY (CL), stiff to very stiff, gray			т	23				1.75		
Ĭ. ▼	45		SS	27	18	44	26		17	8
	15									
- hard below 18'			SS	20					69	
	20			20					09	
			т	20	18	52	34	4.5		9
	25	_		20	10	02		1.0		
(continued)	30		SS	20					86	
	oring l in-walle	-			Ā	Wate	er enco	ountered	during d	drilling
depth) Field Drilling Data: Coordinates: Hand-held GPS Unit Loggade By: P. Arizola WC = Water Content (%)	N = 9P	TRI	ow Cou	nt	Ţ	Dela	yed wa	ater read	ing	
Logged By: R. Arizola Driller: Tero Drilling Equipment: Truck-mounted drill rig PL = Plastic Limit PI = Plasticity Index			sing #20		е					
Single flight auger: 0 - 40 ft PI = Plasticity Index PP = Pocket Penetrometer (tsf)										

Boring Log No. B-105 (continued)

		Project: Mitchell Lake W San Antonio, Te	etland exas		Sar	npling	Date	: 1/2	2/18	-			
		Leastion: See Paring Leas	tion Dian			ordina ckfill:	tes:				W98	°29'23.′	"
ł		Location: See Boring Loca		D	epth (ft)	SN	wc		ttings	PI	PP	N	-200
	LEAN CI	Soil Descrip AY (CL), stiff to very stiff, g			(ft)	JIN	VVC	FL		FI	ГГ	IN	-200
		Y (CH), hard, tan, with trac			35	SS	14					81/10"	
	Develop	e terminated at 40 feet			40	SS	16					74	
2017-698.GPJ 5/31/18 (BORING LOG SA13-02, ARIASSA12-01.GDT, LIBRARY2013-01.GLB)	Borenoie	e terminaled at 40 ieët											
017-698.GPJ 5/31/18 (BORING LC	After : 14-f depth) Field Drilli Coordinate Logged By Driller: Ter Equipment	intered during drilling: 13-ft depth t depth (35.2-ft open borehole ng Data: is: Hand-held GPS Unit : R. Arizola	Nomenclature Us Split Spoon (SS) WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetromete	Thin-1	ng Log walled tul = SPT Blo = % Pass	ow Cou	nt 0 Siev	⊻ ⊻ e			untered	during d	rilling

Project: Mitchell Lake We San Antonio, Tex			Samp	ling [Date	: 1/2	3/18		_		
			Coord	dinate	es:	N29	9°16'	14.6'	' W98	°29'22.7	7"
Location: See Boring Loca	tion Plan		Backf	ill:		Cut	ttings	3		1	
Soil Descript		Dept (ft)	n s	SN N	NC	PL	LL	PI	PP	Ν	-20
LEAN CLAY with Sand (CL), very sti	ff, brown			SS	17					25	
- becomes tan and hard below 2'			··· ··· ··· ··· ··· ··· ··· ··· ··· ··	ss	10	16	40	24		39	81
		5	-	ss	13					42	
FAT CLAY (CH), hard, light brown				ss	12					79/11"	
		10		ss	14					50/5"	
				ЭB	10	17	57	40			97
		15 15	···	SS	19					45	
LEAN CLAY (CL), very stiff, tan	⊥	20		т	17				2.5		
- hard with calcareous deposits belo	w 23'	25		т	17	14	43	29	4.0		8
(continued)		30		т	14				4.5		
Groundwater Data: First encountered during drilling: 23-ft depth After : 16.6-ft depth (27.3-ft open borehole depth) Field Drilling Data: Coordinates: Hand-held GPS Unit Logged By: R. Arizola Driller: Tero Drilling Equipment: Truck-mounted drill rig Single flight auger: 0 - 38.9 ft	Nomenclature Used of Split Spoon (SS) Thin-walled tube (T) WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit Pl = Plasticity Index PP = Pocket Penetrometer (tsf)	Grab Sar N = SF ** = Blo Pe -200 = %	nple (GE PT Blow ow Cour enetratio	Count nts Dur n	ing S		Dela		ountered ater read	d during d ding	rilling

Arias Geoprofessionals

Boring Log No. B-106 (continued)

						<u>,</u>				/			
		Project: Mitchell Lake W San Antonio, Te			S	ampling	g Date	e: 1/2	3/18				
					С	oordina	ites:	N2	9°16'	14.6'	W98	29'22.	7"
		Location: See Boring Loca	ation Plan			ackfill:		Cu	ttings	5			
		Soil Descrip			Depth (ft)	SN	wc	PL	LL	PI	PP	Ν	-200
	LEAN CL	AY (CL), very stiff, tan <i>(co</i>	ntinued)										
	- stiff with	sand from 33' to 36'											
					35	Т	16	13	31	18	3.5		71
	bard an	d gravelly below 36'											
		terminated at 38.9 feet				SS	13					**50/5"	
2017-698.GPJ 5/31/18 (BORING LOG SA13-02,ARIASSA12-01.GDT,LIBRARY2013-01.GLB)													
G LOG	Groundwat First encour	er Data: ntered during drilling: 23-ft depth	Nomenclature Use										
30RIN	After : 16.6- depth)	ft depth (27.3-ft open borehole	Split Spoon (SS)	\boxtimes	Grab Sampl	e (GB)		∑ ▼			ountered ater read	during d ina	rilling
1/18 (E	Field Drillin Coordinates	: Hand-held GPS Unit	Thin-walled tube (T) WC = Water Content (%)		N = SPT	Blow Cou	nt	- <u>₹</u> -	Dola	,00 ₩			
J 5/3	Logged By: Driller: Tero	R. Arizola Drilling	PL = Plastic Limit		** = Blow	Counts D		Seatin	g				
017-698.GF	Equipment: Single flight	Truck-mounted drill rig auger: 0 - 38.9 ft	LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer (t	tsf)	-200 = % Pa	tration ssing #20	00 Siev	е					
Ň													

		Project: Mitchell Lake W San Antonio, Te			Sa	mpling	Date	: 1/2	2/18				
					-	ordina	tes:	N2	9°16'	17.6'	' W98	°29'18.9)''
		Location: See Boring Loca		Dept		ckfill:			ttings				
				(ft)		SN	wc	PL	LL	PI	PP	N	-200
		NDY LEAN CLAY (CL), ha us deposits	rd, brown, with trace			SS	12					32	
						SS	9					33	
				5		т	13				4.5+		
						Т	12				4.5+		
	SANDY I stains	EAN CLAY (CL), very stiff	, dark brown, with ferrous	10		Т	16	15	44	29	4.5+		61
						SS	13					28	
	- light gra	ay, stiff with trace calcareou	us deposits from 13' to 18'	15		Т	22	16	48	32	2.0		66
	- soft and	l gray below 18'	Ţ	20		т	24				0.25		
2017-698.GPJ 5/31/18 (BORING LOG SA13-02, ARIASSA12-01.GDT, LIBRARY2013-01.GLB)	SANDYI	EAN CLAY (CL), hard, bro	own, with ferrous stains	25		SS	29	16	40	24		50/5"	62
SA13-02, ARIAS		(continued)		30		SS	28					**50/5"	
IG LOC	Groundwa During drill	ing: Not encountered	Nomenclature Used or Split Spoon (SS)										
2017-698.GPJ 5/31/18 (BORIN	After : 17.4 depth) Field Drillin Coordinate Logged By Driller: Tere Equipment	-ft depth (25.7-ft open borehole ng Data: s: Hand-held GPS Unit . R. Arizola	** = Ble	PT BI ow C netra	ow Cou ounts D ation	uring S			yed wa	ater read	ling		

Boring Log No. B-107 (continued)

_			5 5							/			
		Project: Mitchell Lake W San Antonio, Te				mpling							
		Location: See Boring Loca	ation Plan			ordina ckfill:	tes:		9°16' ttings		W98	°29'18.9	9"
ľ		Soil Descrip		Dept (ft)	h	SN	wc				PP	N	-200
	SANDY I (continue	EAN CLAY (CL), hard, bro	own, with ferrous stains	35		SS	30					**50/4"	
ļ	Danahala	e terminated at 38.75 feet				ss	27					**50/3"	
2017-698.GPJ 5/31/18 (BORING LOG SA13-02, ARIASSA12-01.GDT, LIBRARY2013-01.GLB)	Groundwa		Nomenclature Use	ed on Boring	Log								
RING	After : 17.4	ing: Not encountered -ft depth (25.7-ft open borehole	Split Spoon (SS)	Thin-wall				_	_ .				
2017-698.GPJ 5/31/18 (BC	Logged By Driller: Ter Equipment	s: Hand-held GPS Unit : R. Arizola	WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer (** = Bl Pe -200 = %	ow C enetra	ow Cou ounts D ation sing #20	uring S			yed wa	ter read	ding	

	Project: Mitchell Lake W San Antonio, Te			Samplin	g Date	e: 3/1	4/18				
	Location: See Boring Loca	ation Plan		Coordin Backfill:	ates:		9°16' ttings		' W98	°29'16.2	2"
	Soil Descrip		Dept (ft)		wc			PI	PP	N	-200
CLAYE	Y SAND with Gravel (SC), b		(π)	т	12	15	30	15	4.5+		26
- very d	ense below 2'		· · · · · · · · · · · · · · · · · · ·	T SS	9		30		4.57	**50/2"	20
CLAYE nodules	Y SAND (SC), tan and brow	n, with calcareous	5		8	15	34	19	4.5+		43
				Т	5						
- loose	from 8' to 10'		10	ss	13					10	
- with fe	errous stains below 10'			T	9	18	32	14			37
- dense	below 13'		15	SS	15					37	
2017-698.GPJ 5/31/18 (BORING LOG SA13-02, ARIASSA12-01.GDT, LIBRARY2013-01.GLB) Approved a point of the contract of the contr											
Groundy	vater Data: illing: Not encountered	Nomenclature Used o									
Field Drill Coordina Logged E Driller: Ea Equipmel Single flig	Iling Data: tes: Hand-held GPS Unit 3y: J. Ramos agle Drilling, Inc. nt: Truck-mounted drill rig ght auger: 0 - 15 ft	Thin-walled tube (T) WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer (tsf)	** = Blo Pe	on (SS) PT Blow Co ow Counts enetration Passing #2	During S		g				

E	Coordinat Backfill: Depth (ft)).3"	W98	°29'47.2	2"			
E	Backfill: Depth						20	-			
	Depth (ft)	SN		N29°16'30.3" W98°29'47.2" Cuttings							
		SIN	WC	PL	LL	PI	N	-200			
		SS	12				22				
//////		00									
		SS	6				**50/5"				
	5	SS	3				50/5"				
		00	Ŭ				00/0				
		SS	5	15	32	17	**50/2"	42			
		~~~	16				47				
	10	55	01				47				
		SS	18	18	42	24	81	74			
		SS	19				50/5"				
Groundwater Data:       Nomenclature Used on Boring Log         During drilling: Not encountered       Field Drilling Data:         Coordinates: Hand-held GPS Unit Logged By: R. Arizola       Split Spoon (SS)         Driller: Tero Drilling       equipment: Truck-mounted drill rig         Single flight auger: 0 - 14.5 ft       WC = Water Content (%)       ** = Blow Counts         PI = Plastic Limit       -200 = % Passing #2         PI = Plasticity Index       N = SPT Blow Count											
g Split Spoon (SS) WC = Water Content (%) ** = Blow Counts During Seating PL = Plastic Limit Penetration LL = Liquid Limit -200 = % Passing #200 Sieve PI = Plasticity Index N = SPT Blow Count											
*	= Blov Pen	ing Log	ing Log = Blow Counts During Se Penetration	ing Log	ing Log = Blow Counts During Seating Penetration	5       SS       3         5       SS       5       15       32         10       SS       16       18       42         10       SS       18       18       42         5       SS       19       0       0         5       SS	ing Log	ing Log			

Project: Mitchell Lake Wetland San Antonio, Texas				Sampling Date: 3/9/18											
				Coor	dina	tes:	N2	129°16'7.6" W98°29'31.6"							
					Backfill:			ttings	<u> </u>						
-	Soil Description Depth (ft) SN						PI	PP	N	-200	DD	Uc			
FAT CLAY (CH), hard, dark brown			т	18	18	50	32	4.5+		95					
LEAN CLAY (CL), hard, brown			т	13				4.5+							
		5	т	12	17	47	30	4.5+		95					
with trace calcareous deposits									40						
			SS	13					42						
			SS	15					24						
			т	15	18	42	24	4.5+		95	109	5.59 (9)			
		15	Т	18				4							
Borehole terminated at 15 feet															
â															
7140004111															
Groundwater Data: During drilling: Not encountered	Nomenclature U				、 、										
Field Drilling Data: Coordinates: Hand-held GPS Unit	Thin-walled tube (T)		Split Spo												
<b>Groundwater Data:</b> During drilling: Not encountered <b>Field Drilling Data:</b> Coordinates: Hand-held GPS Unit Logged By: J. Ramos Driller: Eagle Drilling, Inc. Equipment: Truck-mounted drill rig Single flight auger: 0 - 15 ft	WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit		N = SF -200 = % DD = Dr	Passir y Dens	ng #20 sity (po	0 Siev cf)									
Single flight auger: 0 - 15 ft	PI = Plasticity Index PP = Pocket Penetromete	er (tsf)	Uc = Co	ompres	sive S	strengt	h (tsf)								

Project: Mitchell Lake Wetland Sampling Date: 3/9/18 San Antonio, Texas															
					Coordinates: N29°16'2.8" W98°29'27.3"										
	Location: See Boring Loc	Backfill:	Denth												
	Soil Des	-	Depth (ft)	SN	WC	PL	LL	PI	PP	-200					
	AN CLAY (CL), hard, dark browr	1		т	15				4.5+						
- br	rown below 2'			т	13	19	43	24	4.5+	95					
			5	т	12				4.5+						
				Т	12	18	43	25	4.5+	96					
			10	т	14				4.5+						
				т	16				4.5+						
			15	т	15				4.5+						
3 SA13-02, ARIASSA12-01.GDT, LIBRARY2013-01.GLB)	rehole terminated at 15 feet														
OI Dur	oundwater Data: ring drilling: Not encountered	Nomenclature Used on Thin-walled tube (T)	n Boring Log												
Fie Cool 2/31/18 (BOK Log Cbn 2/31/18 (BOK Log Cbn 2/31/18 (BOK Cbn 2/31/31/31/31/31/31/31/31/31/31/31/31/31/	<b>Id Drilling Data:</b> ordinates: Hand-held GPS Unit gged By: J. Ramos ller: Eagle Drilling, Inc. uipment: Truck-mounted drill rig gle flight auger: 0 - 15 ft	WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer (tsf)	-200 = % Passing #200	) Sieve											
2017	-														

Project: Mitchell Lake Wetland San Antonio, Texas						Sampling Date: 3/9/18										
						Coordinates: N29°16'3.4'' W98°29'9.2'' Backfill: Cuttings										
ł	Location: See Boring Location Plan  Seil Description  Depth							Cuttir		PP	-200		Uc			
┢	Soil Description     Depth (ft)       LEAN CLAY (CL), hard, dark brown to brown     Image: Comparison of the second seco					WC						סט	UC			
		(,,,			Т	18	17	46	29	4.5+	90					
	- brown belov	w 2'			т	11				4.5+						
				5	т	11				4.5+						
					т	12				4.5+						
						12				1.01						
					т	14	17	44	27	4.5+	98	109	9.13			
				10									(8)			
					Т	16				4.5+						
					т	18				4.5+						
ŀ	Borehole terr	minated at 15 feet		15												
1.GLB)																
Y2013-0																
LIBRAR																
01.GDT,																
SSA12-(																
2,ARIA																
SA13-0																
NG LOG	Groundwater Data:       Nomenclature Used on Boring Log         During drilling: Not encountered       Thin-walled tube (T)															
3 (BORI	Field Drilling Da Coordinates: Har	nd-held GPS Unit														
15/31/18	Logged By: J. Ra Driller: Eagle Dri Equipment: Truc	DD = D	Passing ry Density	(pcf)												
2017-698.GPJ 5/31/18 (BORING LOG SA13-02,ARIASSA12-01.GDT,LIBRARY2013-01.GLB)	Single flight auge	Uc = C	ompressiv	/e Strei	ngth (t	sf)										
2017-(	Single night aug	5	PP = Pocket Penetrometer (	(เรา)												

Arias Geoprofessionals

	Project: Mitchell Lake W	letland	<u> </u>	oling D	) Date: 3/9/18											
	San Antonio, Texas															
	Location: See Boring Location Plan					Coordinates: N29°15'53.9" W98°29'6.1" Backfill: Cuttings										
	Soil Depention Depth					PL		PI	PP	-200	DD	Uc				
LEAN	LEAN CLAY (CL), very stiff to hard, dark brown								· ·							
				Т	16				4.0							
				· · ·												
				Т	12				4.5+							
			5	Т	13	16	48	32	4.5+	95						
h			//// <u></u>													
- brow	n below 6'			Т	15				4.5+							
				т	15				4.5+							
FAT C	LAY (CH), hard, light brown		10													
				Т	17	17	50	33	4.5+	97	107	5.76 (9)				
				Т	20				4.5+							
Dereh	ale termineted at 15 feat		15													
Dorent	ble terminated at 15 feet															
.GLB)																
013-01																
SA13-02,ARIASSA12-01.GDT,LIBRARY2013-01.GLB)																
DT,LIBF																
2-01.GI																
ASSA1																
02,ARI																
SA13-																
ິ <b>Ground</b> g During d	Groundwater Data: During drilling: Not encountered															
Field D	illing Data:	Thin-walled tube (T)														
Coordinates: Hand-held GPS Unit Logged By: J. Ramos Drilling Inc. WC = Water Content (%) -200 = % Passing #200 Sieve																
Driller: Eagle Drilling, Inc.     PL = Plastic Limit     DD = D       Equipment: Truck-mounted drill rig     LL = Liquid Limit     Uc = C					ty (pcf) sive Stre	ngth (†	tsf)									
90 Ground During of Field Di Coordin But/togged Driller: F Equipm Single f	ight auger: 0 - 15 ft	PI = Plasticity Index PP = Pocket Penetrometer (ts	sf)													

Arias Geoprofessionals

Project: Mitchell Lake W		<u> </u>		Sampli	ng Da	ate: 3	3/9/18	3				
San Antonio, Te	exas			<b>•</b> "			1000			000014		
Location: See Boring Location	ation Plan			Coordir Backfill			V29°1 Cuttin		" W98	8°29'4.2	2"	
Soil Descript			pth		wc			ys Pl	PP	-200	DD	
LEAN CLAY with Sand (CL), very s		(1	ft)			• -		••	• •	-200	00	00
to brown				Т	17	15	33	18	4.0	70		
				-	10							
				Т	13				4.5+			
- with calcareous deposits below 4'			5	т	14				4.5+			
			<u> </u>		14				4.5+			
LEAN CLAY (CL), hard, light brown deposits	, with calcareous			т	16				4.5+	85		
									1.0			
- very stiff from 8' to 10', tan brown	below 8'			т	15	15	44	29	4.5+	97	107	2.35
			10									(8)
				т	14				4.5+			
					10				45.			
				Т	10				4.5+			
Borehole terminated at 15 feet			15									
1.6(B)												
2013-0												
RARY												
21.LIB												
2-01.G												
ASSA1.												
<u>12. ARI</u>												
SA13-C												
Groundwater Data:         During drilling: Not encountered         Field Drilling Data:         Coordinates: Hand-held GPS Unit         Logged By: J. Ramos         Driller: Eagle Drilling, Inc.         Equipment: Truck-mounted drill rig         Single flight auger: 0 - 15 ft	Nomenclature Use	ed on Bo	ring l	Log								
Service Field Drilling Data:	Thin-walled tube (T)											
Coordinates: Hand-held GPS Unit Logged By: J. Ramos	WC = Water Content (%)	-201	0 = %	Passing #	£200 S	ieve						
Driller: Eagle Drilling, Inc. Equipment: Truck-mounted drill rig	PL = Plastic Limit LL = Liquid Limit	DE	D = Dry	/ Density mpressiv	(pcf)		sf)					
ି ଝ଼ି Single flight auger: 0 - 15 ft	PI = Plasticity Index PP = Pocket Penetrometer		0 - 00	110103010		igui (t	,					
2017.		(.01)										

	Project: Mitchell Lake W San Antonio, Te			Sampli	ing D	ate: 3	3/9/18	3				
				Coordi	nates	: 1	^29°	15'40	.1" W	98°28'	56.2"	
	Location: See Boring Loca	ation Plan		Backfil			Cuttir					
	Soil Descript		Depth (ft)	SN	wc		LL	PI	PP	-200	DD	Uc
LEAN	CLAY (CL), very stiff, dark br	rown	(10)	т	19				3.5			
									0.0			
				_								
				Т	16	18	46	28	4.5+	86	98	3.44 (3)
- hard	l below 4'		—									
			5	Т	15				4.5+			
				Т	15				4.5+			
- brow	vn below 8'											
				Т	17	17	42	25	4.5+	96		
			10									
				Т	18				4.5+			
				Т	18				4.5+			
Boreh	ole terminated at 15 feet	//////	15									
B)												
01.GLE												
2013-(												
RARY												
T,LIBI												
01.GD												
SA12												
ARIAS												
13-02,												
V DO SV	durator Data	<b>N N N</b>										
During	dwater Data: drilling: Not encountered	Nomenclature Used on Thin-walled tube (T)	Boring	Log								
Field [	Drilling Data:											
	nates: Hand-held GPS Unit d By: J. Ramos	WC = Water Content (%)	-200 = %	Passing	#200 S	lieve						
Equipr	Eagle Drilling, Inc. nent: Truck-mounted drill rig	PL = Plastic Limit LL = Liquid Limit	DD = Dr	y Density	(pcf)		sf)					
2017-698.GPJ 5/31/18 (BORING LOG SA13-02.ARIASSA12-01.GDT,LIBRARY2013-01.GL Beind D Dinind Coordination States and Coordinatio	flight auger: 0 - 15 ft	PI = Plasticity Index PP = Pocket Penetrometer (tsf)			5 010							
2017-												

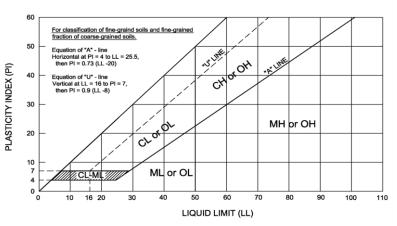
ſ		Project: Mitchell Lake W	/etland	<u> </u>	Sampli	ing Da	ate: 3	3/9/18	3				
		San Antonio, Te	exas										
		Location: Soc Paring Loc	ation Dlan		Coordi Backfil					.2" W	98°28'4	45.5"	
ł		Location: See Boring Loc		Depth	SN	wc		Cuttir	igs Pl	PP	-200	חח	
-	I FAN CI	Soil Descript AY (CL), hard, dark browr		(ft)	SIN	WC.	PL		PI	PP	-200	סס	00
					Т	17				4.5+			
	- brown k	pelow 2'			_								
					Т	19	19	50	31	4.5+	94		
				5	т	15				4.5+			
						15				4.51			
					т	18	16	46	30	4.5+	98		
						_	_			_			
					т	20				4.5+			
				10									
					Т	19				4.5+			
					т	18	17	45	28	4	93	111	4.95
				15		10			20	-			(12)
	Borehole	e terminated at 15 feet											
iLB)													
3-01.G													
<b>RY201</b>													
,LIBR∕													
01.GDT													
SA12-0													
ARIAS													
A13-02,													
LOG S/	Groundwa		Nomenclature Us	ed on Borina	Loa								
RING	-	ing: Not encountered	Thin-walled tube (T)	<b></b> J	J								
/18 (BC	Field Drilli Coordinate Logged By	es: Hand-held GPS Unit		<b>•••</b>	<b>.</b> .	1005 F							
J 5/31.	Driller: Eac	le Drilling, Inc. : Truck-mounted drill rig	WC = Water Content (%) PL = Plastic Limit	DD = D	Passing a ry Density	(pcf)		af)					
2017-698.GPJ 5/31/18 (BORING LOG SA13-02,ARIASSA12-01.GDT,LIBRARY2013-01.GLB)		t auger: 0 - 15 ft	LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer		ompressiv	e Strei	ngth (t	ST)					
2017-	egio ingi		FF - FUCKEL PENELFOMELER	(131)									

ſ	Project: Mitchell Lake V San Antonio, T	Vetland exas		Sampling	g Date	: 3/9	/18				
	Location: See Boring Loc	nation Plan		Coordina Backfill:	tes:		9°15' ttings		' W98'	28'53.9	9''
ł	Soil Descri		Depth		wc				PP	N	-200
	LEAN CLAY (CL), very stiff, dark b		(ft)	Т	15				3.75		
	SANDY LEAN CLAY (CL), hard, re	eddish brown		Т	10	12	37	25	4.5+		52
	- with calcareous deposits from 4'	to 6'	5	т	8				4.5+		
				T T	8				4.5+		
									1.0		
			10	SS	6	12	29	17		33	67
				ss	8					44	
				SS	7					49	
2017-698.GPJ 5/31/18 (BORING LOG SA13-02,ARIASSA12-01.GDT,LIBRARY2013-01.GLB)	Borehole terminated at 15 feet										
-698.GPJ 5/31/18 (BORING LO	Groundwater Data: During drilling: Not encountered Field Drilling Data: Coordinates: Hand-held GPS Unit Logged By: J. Ramos Driller: Eagle Drilling, Inc. Equipment: Truck-mounted drill rig Single flight auger: 0 - 15 ft	WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index	Split Spoor N = SPT -200 = % P	n (SS) F Blow Cou		е					
2017-69	Single flight auger: 0 - 15 ft	PP = Pocket Penetrometer (tsf)									

Project: Mitchell Lake W San Antonio, Te	etland	0	Sampling	g Date	e: 3/9	/18				
Location: See Boring Loca	ition Plan		Coordina Backfill:	ites:		9°15' ttings		W98°28	8'43.3"	
Soil Descrip		Depth		wc	PL		PI	PP	N	-200
LEAN CLAY (CL), hard, dark brown		(ft)	T	15	15	40	25	4.5+		87
LEAN CLAY (CL), hard, brown, with deposits	trace calcareous		T	11				4.5+		
		5	Т	10	15	43	28	4.5+		80
FAT CLAY (CH), hard, brown			ss	12					36	
		10	ss	12					49	
			ss	12	16	55	39		39	94
		15	SS	13					44	
Borehole terminated at 15 feet         Image: Strength of the strengt										
Groundwater Data: During drilling: Not encountered	Nomenclature Used of Thin-walled tube (T)	Split Spoo								
Field Drilling Data: Coordinates: Hand-held GPS Unit Logged By: J. Ramos Driller: Eagle Drilling, Inc. Equipment: Truck-mounted drill rig Single flight auger: 0 - 15 ft	WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit PI = Plasticity Index PP = Pocket Penetrometer (tsf)	N = SP -200 = % F	T Blow Cou Passing #2(		e					

Project: Mitchell La San Antoni			Sampl	ing Da	ate: (	3/14/ [,]	18				
			Coordi					.7" W	98°28'(	36.3"	
Location: See Boring		Depth	Backfil	wc		Cuttir	ľ.	PP	-200		
Soil Desc LEAN CLAY with Sand (CL), h		(ft)			FL		FI		-200	עט	00
			Т	19				4.5+			
- brown below 2'			т	14	21	47	26	4.5+	82	120	12.13 (3)
		5	Т	12				4.5+			
			т	13				4.5+			
LEAN CLAY (CL), hard, brown		10	т	15	21	49	28	4.5+	98		
			т	15				4.5+			
			т	14				4.5+			
Borehole terminated at 15 feet	······································	15									
Groundwater Data:         During drilling: Not encountered         Field Drilling Data:         Coordinates: Hand-held GPS Unit         Logged By: J. Ramos         Driller: Eagle Drilling, Inc.											
Groundwater Data:	Nomenclature Used or	Boring									
During drilling: Not encountered	Thin-walled tube (T)	Doning	LUY								
Field Drilling Data: Coordinates: Hand-held GPS Unit Logged By: J. Ramos Driller: Eagle Drilling, Inc. Equipment: Truck-mounted drill rig	WC = Water Content (%) PL = Plastic Limit LL = Liquid Limit	DD = Di	Passing ry Density ompressiv	(pcf)		tsf)					
Equipment: Truck-mounted drill rig	PI = Plasticity Index PP = Pocket Penetrometer (tsf)				J (	,					

Project: Mitchell Lake W San Antonio, To	Vetland	Sar	mpling	Date	: 3/9	/18				
		Co	ordina	tes:	N2	9°15'	52.1'	' W98'	28'40.3	3"
Location: See Boring Loc	ation Plan		ckfill:		Cu	ttings				
Soil Descrip		Depth (ft)	SN	WC	PL	LL	PI	PP	Ν	-200
FAT CLAY with Sand (CH), very st	iff, dark brown		Т	20				3.75		
- hard with sand below 2'										
			Т	13	17	51	34	4.5+		79
		5	Т	13				4.5+		
SANDY LEAN CLAY (CL), hard, re	ddish brown							-		
			Т	8	14	30	16	4.5+		54
			т	9				4.5+		
		10	1	9				4.5+		
			Т	10				4.5+		
- gray below 11'										
			SS	11	15	44	29		30	60
- sand seam at 14.5'		15	- 33		15	44	29		30	00
Borehole terminated at 15 feet	/									
01.GLB)										
Y2013-1										
LIBRAR										
11.GDT,										
SSA12-C										
2. ARIA										
SA13-C										
Groundwater Data: During drilling: Not encountered	Nomenclature Used on Thin-walled tube (T)	Boring Log Split Spoon (S								
Field Drilling Data:	Thin-walled tube (T)	spiir spoon (S	53)							
Logged By: J. Ramos Driller: Eagle Drilling, Inc.	WC = Water Content (%) PL = Plastic Limit	N = SPT Bl -200 = % Pass			e					
Groundwater Data:         During drilling: Not encountered         Field Drilling Data:         Coordinates: Hand-held GPS Unit         Logged By: J. Ramos         Driller: Eagle Drilling, Inc.         Equipment: Truck-mounted drill rig         Single flight auger: 0 - 15 ft	LL = Liquid Limit PI = Plasticity Index	200 - 70 F as	,ing #20							
မို Single flight auger: 0 - 15 ft	PP = Pocket Penetrometer (tsf)									


### KEY TO TERMS AND SYMBOLS USED ON BORING LOGS

	MA	Jor I	DIVISIO	NS	GRC Syme		DESCRIPTIONS		
	٥		action is e size	Bravels to Fines)	GW	32	Well-Graded Gravels, Gravel-Sand Mixtures, Little or no Fines		
	Sieve siz	GRAVELS	Coarse fri Vo. 4 Siev	Clean Gravels (little or no Fines)	GP		Poorly-Graded Gravels, Gravel-Sand Mixtures, Little or no Fines		
SOILS	No. 200	GRA	More than Half of Coarse fraction LARGER than No. 4 Sieve size	Gravels with Fines (Appreciable nount of Fines)	GM		Silty Gravels, Gravel-Sand-Silt Mixtures		
AINED (	GER tha		More tha LARG	Gravels with Fines (Appreciable amount of Fines)	GC		Clayey Gravels, Gravel-Sand-Clay Mixtures		
COARSE-GRAINED SOILS	More than half of material LARGER than No. 200 Sieve size		action is ve size	Sands no Fines)	sw		Well-Graded Sands, Gravelly Sands, Little or no Fines		
COAF	half of me	SANDS	More than half of Coarse fraction is SMALLER than No. 4 Sieve size	Clean Sands (little or no Fines)	SP		Poorly-Graded Sands, Gravelly Sands, Little or no Fines		
	fore than	SAN	an half of _ER than	Sands with Fines (Appreciable amount of Fines)	SM		Silty Sands, Sand-Silt Mixtures		
	2		More thi SMALI	Sands w (Appre amount (	SC		Clayey Sands, Sand-Clay Mixtures		
oll	MALLER ze	2 S	CLAYS Liquid Limit less than 50		SILTS & CLAYS uid Limit less		ML		Inorganic Silts & Very Fine Sands, Rock Flour, Silty or Clayey Fine Sands or Clayey Silts with Slight Plasticity
NED SC	naterial SI 0 Sieve si		C .	Liquid L thar	CL		Inorganic Clays of Low to Medium Plasticity, Gravelly Clays, Sandy Clays, Silty Clays, Lean Clays		
FINE-GRAINED SOILS	More than half of material SMALLER than No. 200 Sieve size	2 S	CLAYS	Liquid Limit Ireater than 50	МН		Inorganic Silts, Micaceous or Diatomaceous Fine Sand or Silty Soils, Elastic Silts		
FIN	More tha th		C ;	Liquic greater	СН		Inorganic Clays of High Plasticity, Fat Clays		
			SA	NDSTONE			Massive Sandstones, Sandstones with Gravel Clasts		
	ERIALS		MA	ARLSTONE			Indurated Argillaceous Limestones		
	LMATE		LI	MESTONE			Massive or Weakly Bedded Limestones		
	FORMATIONAL MATERIALS		CL	AYSTONE			Mudstone or Massive Claystones		
	FORM			CHALK			Massive or Poorly Bedded Chalk Deposits		
		MARINE CLAYS			Cretaceous Clay Deposits				
		GROUNDWATER		¥ ⊻	Indicates Final Observed Groundwater Level Indicates Initial Observed Groundwater Location				

Density of Granular Soils							
Number of Blows per ft., N	Relative Density						
0 - 4	Very Loose						
4 - 10	Loose						
10 - 30	Medium						
30 - 50	Dense						
Over 50	Very Dense						

Consistency and Strength of Cohesive Soils							
Number of Blows per ft., N	Consistency	Unconfined Compressive Strength, q _u (tsf)					
Below 2	Very Soft	Less than 0.25					
2 - 4	Soft	0.25 - 0.5					
4 - 8	Medium (Firm)	0.5 - 1.0					
8 - 15	Stiff	1.0 - 2.0					
15 - 30	Very Stiff	2.0 - 4.0					
Over 30	Hard	Over 4.0					

### PLASTICITY CHART (ASTM D 2487-11)



### **KEY TO TERMS AND SYMBOLS USED ON BORING LOGS**

### TABLE 1 Soil Classification Chart (ASTM D 2487-11)

Soil Clossification

					oil Classification	
Criteria of Assignin	g Group Symbols and G	roup Names Using Laborato	ry Tests ^A	Group Symbol	Group Name ^B	
COARSE-GRAINED SOILS	Gravels (More than 50% of	Clean Gravels (Less than 5% fines ^C )	$Cu \ge 4$ and $1 \le Cc \le 3^{D}$	GW	Well-Graded Gravel ^E	
	coarse fraction retained	( ,	Cu < 4 and/or	GP	Poorly-Graded Gravel ^E	
	on No. 4 sieve)		$[Cc < or Cc > 3]^D$		-	
		Gravels with Fines (More than 12% fines ^C )	Fines classify as ML or MH	GM	Silty Gravel ^{E,F,G}	
More than 50% retained on No.		( · · · · · · · · · · · · · · · · · · ·	Fines classify as CL or CH	GC	Clayey Gravel ^{E,F,G}	
200 sieve	Sands	Clean Sands	$Cu \ge 6$ and $1 \le Cc \le 3^D$	SW	Well-Graded Sand	
	(50% or more of coarse	(Less than 5% fines ^H )	Cu < 6 and/or	SP	Poorly-Graded Sand	
	fraction passes No. 4		[Cc < or Cc > 3] ^D			
	sieve)	Sands with Fines (More than 12% fines ^H )	Fines classify as ML or MH	SM	Silty Sand ^{F,G,I}	
		( · · · · · · · · · · · · · · · · · · ·	Fines classify as CL or CH	SC	Clayey Sand ^{F,G,I}	
FINE-GRAINED SOILS	Silts and Clays	inorganic	PI > 7 and plots on or above "A" line ^J	CL	Lean Clay ^{K,L,M}	
	Liquid limit less than 50		PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}	
50% or more passes the No.		organic	Liquid limit - oven dried Liquid limit - not dried <0.75	OL	Organic Clay ^{K,L,M,N} Organi Silt ^{K,L,M,O}	
200 sieve	Silts and Clays	inorganic	PI plots on or above "A" line	СН	Fat Clay ^{K,L,M}	
	Liquid limit 50 or more		PI plots on or below "A" line	MH	Elastic Silt ^{K,L,M}	
		organia Liquid limit over dried		OH	Organic Clay ^{K,L,M,P}	
		-	Liquid limit - oven dried <0.75		Organic Silt ^{K,L,M,Q}	
HIGHLY ORGANIC SOILS	GHLY ORGANIC SOILS Primarily organic matter, dark in color, and organic odor					

^A Based on the material passing the 3-inch (75mm) sieve

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name

 $^{\rm c}\,$  Gravels with 5% to 12% fines require dual symbols:

GW-GM well-graded gravel with silt

GW-GC well-graded gravel with clay

GP-GM poorly-graded gravel with silt

GP-GC poorly-graded gravel with clay

 D  Cu = D₆₀/D₁₀

Cc =  $(D_{30})^2$ 

D₁₀ x D₆₀

^{*E*} If soil contains  $\geq$  15% sand, add "with sand" to group name

- F If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM
- ^G If fines are organic, add "with organic fines" to group name

^H Sand with 5% to 12% fines require dual symbols:

SW-SM well-graded sand with silt

SW-SC well-graded sand with clay

SP-SM poorly-graded sand with silt

SP-SC poorly-graded sand with clay

[/] If soil contains ≥ 15% gravel, add "with gravel" to group name

^J If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay

^K If soil contains 15% to < 30% plus No. 200, add "with sand" or "with gravel," whichever is predominant

[⊥] If soil contains ≥ 30% plus No. 200, predominantly sand, add "sandy" to group name

- ^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name
- ^{*N*} PI  $\geq$  4 and plots on or above "A" line

° PI < 4 or plots below "A" line

P PI plots on or above "A" line

° PI plots below "A" line

### TERMINOLOGY

Boulders Cobbles Gravel Sand	Over 12-inches (300mm) 12-inches to 3-inches (300mm to 75mm) 3-inches to No. 4 sieve (75mm to 4.75mm) No. 4 sieve to No. 200 sieve (4.75mm to 0.075mm)	Parting Seam Layer	Inclusion < 1/8-inch thick extending through samples Inclusion 1/8-inch to 3-inches thick extending through sample Inclusion > 3-inches thick extending through sample						
Silt or Clay	Passing No. 200 sieve (0.075mm)								
Calcareous	Containing appreciable quantities of calcium carbonate, gene	erally nodular							
Stratified Laminated Fissured	Alternating layers of varying material or color with layers at le Alternating layers of varying material or color with the layers Breaks along definite planes of fracture with little resistance	less than 6mm thi	ck						
Slickensided	Fracture planes appear polished or glossy sometimes striate	0							
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown								
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay								
Homogeneous	Same color and appearance throughout								

### KEY TO TERMS AND SYMBOLS USED ON BORING LOGS

Class	Hardness	Field Test		Approximate Range of Uniaxial Compression Strength kg/cm ² (tons/ft ² )	
I	Extremely hard	Many blows with geologic hammer required to break intact specimen.		> 2,000	
11	Very hard	Hand held specimen breaks with hammer end of pick under more than one blow.		2,000 – 1,000	
111	Hard	Cannot be scraped or pealed with knife, hand held specimen can be broken with single moderate blow with pick.		1,000 – 500	
IV	Soft	Can just be scraped or peeled with knife. Indentations 1mm to 3mm show in specimen with moderate blow with pick.		500 – 250	
V	Very soft	Material crumbles under moderate blow with sharp end of pick and can be peeled with a knife, but is too hard to hand-trim for triaxial test specimen.		250 – 10	

### Hardness Classification of Intact Rock

### **Rock Weathering Classifications**

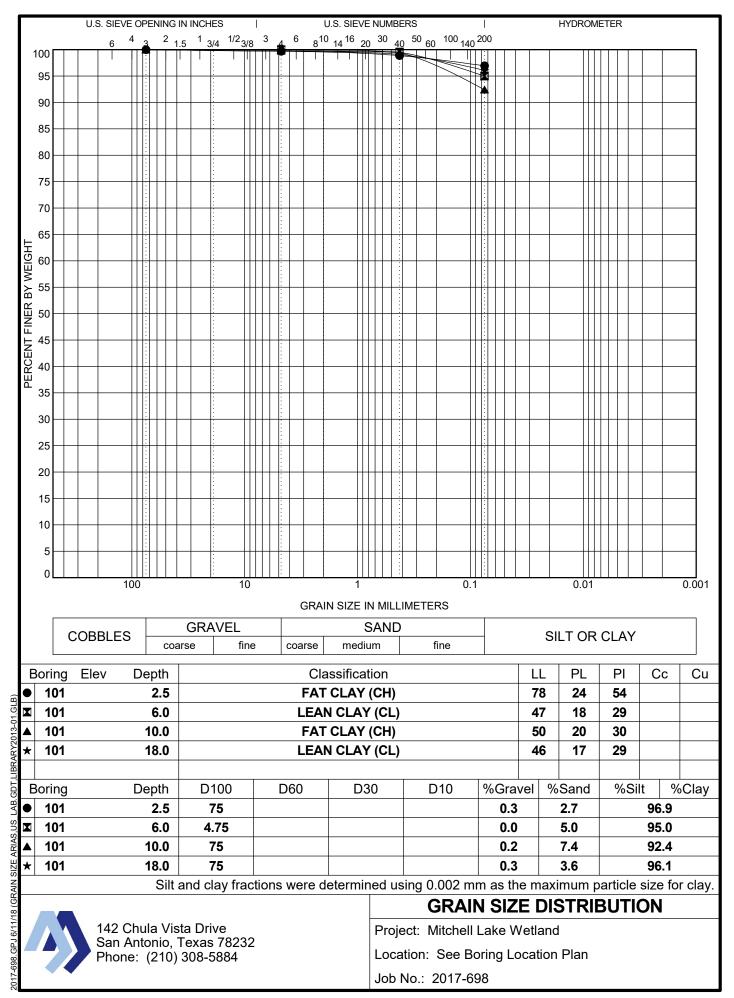
Grade	Symbol	Diagnostic Features				
Fresh F		No visible sign of Decomposition or discoloration. Rings under hammer impact.				
Slightly Weathered WS		Slight discoloration inwards from open fractures, otherwise similar to F.				
Moderately Weathered WM		Discoloration throughout. Weaker minerals such as feldspar decomposed. Strength somewhat less than fresh rock, but cores cannot be broken by hand or scraped by knife. Texture preserved.				
Highly Weathered WH		Most minerals somewhat decomposed. Specimens can be broken by hand with effort or shaved with knife. Core stones present in rock mass. Texture becoming indistinct, but fabric preserved.				
Completely Weathered WC		Minerals decomposed to soil, but fabric and structure preserved (Saprolite). Specimens easily crumbled or penetrated.				
Residual Soil RS		Advanced state of decomposition resulting in plastic soils. Rock fabric and structure completely destroyed. Large volume change.				

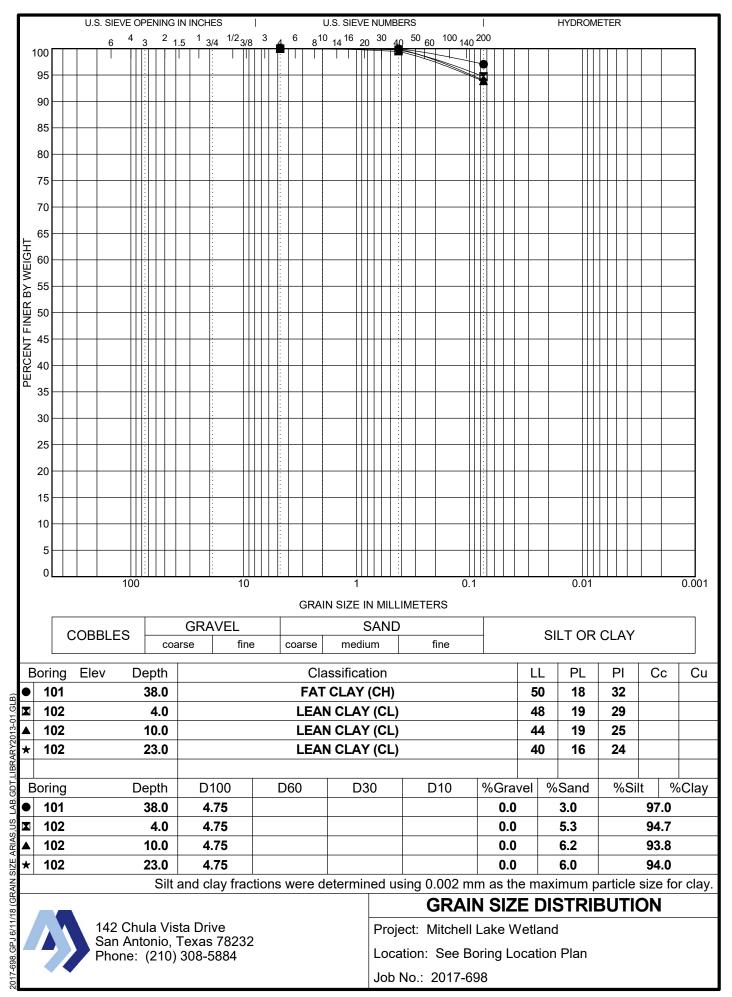
### **Rock Discontinuity Spacing**

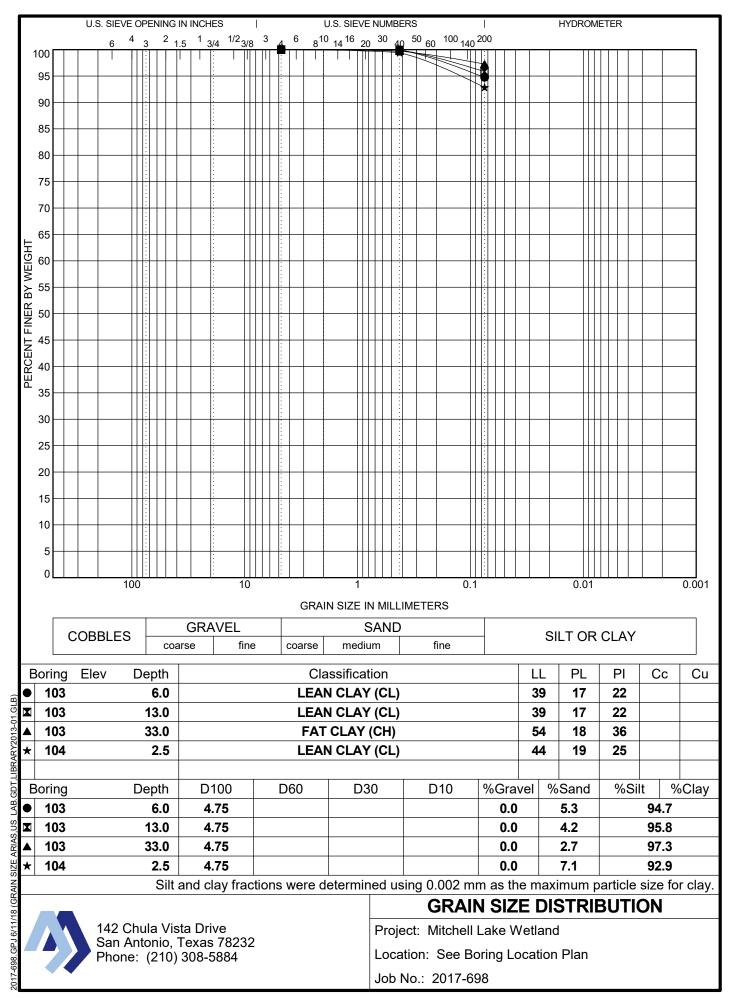
Description for Structural Features: Bedding, Foliation, or Flow Banding	Spacing	Description for Joints, Faults or Other Fractures		
Very thickly (bedded, foliated, or banded)	More than 6 feet	Very widely (fractured or jointed)		
Thickly	2 – 6 feet	Widely		
Medium	8 – 24 inches	Medium		
Thinly	21/2 – 8 inches	Closely		
Very thinly	³ / ₄ – 2 ¹ / ₂ inches	Very closely		
Description for Micro-Structural Features: Lamination, Foliation, or Cleavage	Spacing	Descriptions for Joints, Faults, or Other Fractures		
Intensely (laminated, foliated, or cleaved)	1⁄4 – 3⁄4 inch	Extremely close		
Very intensely	Less than ¼ inch			

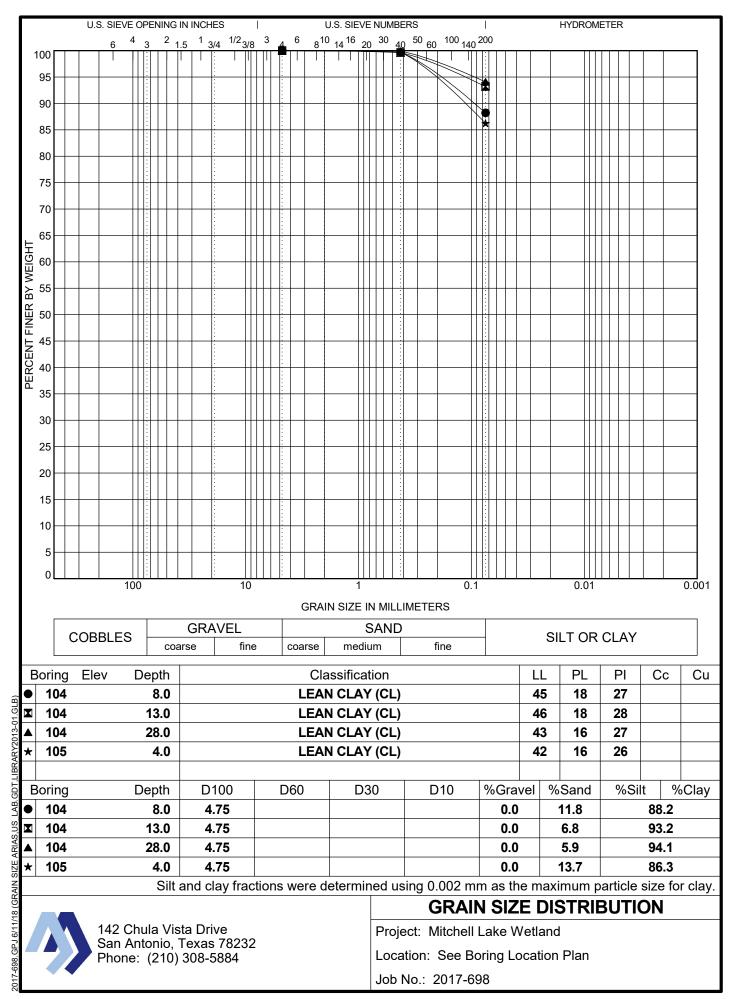
### Engineering Classification for in Situ Rock Quality

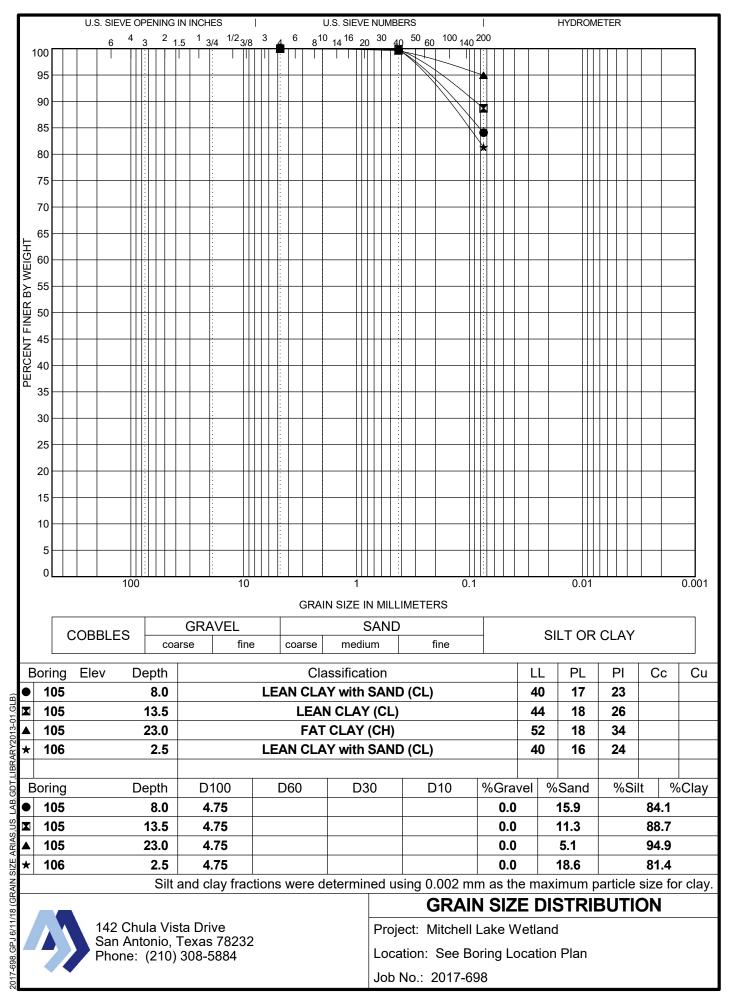
RQD %	Velocity Index	Rock Mass Quality
90 – 100	0.80 - 1.00	Excellent
75 – 90	0.60 - 0.80	Good
50 – 75	0.40 – 0.60	Fair
25 – 50	0.20 – 0.40	Poor
0 – 25	0 – 0.20	Very Poor

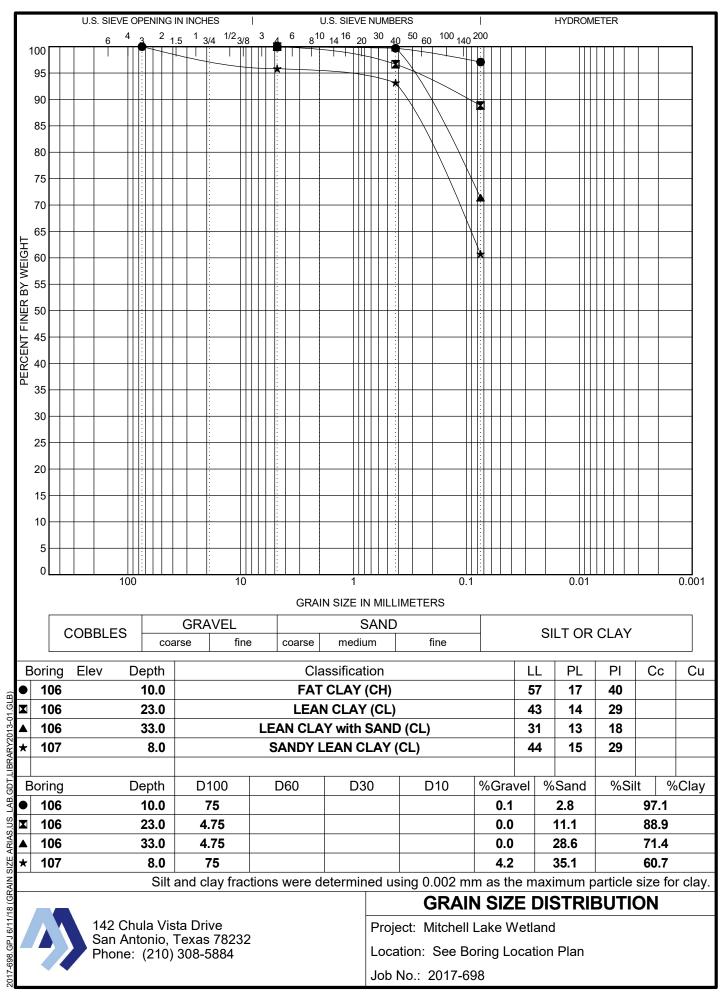

# APPENDIX C: LABORATORY AND FIELD TEST PROCEDURES

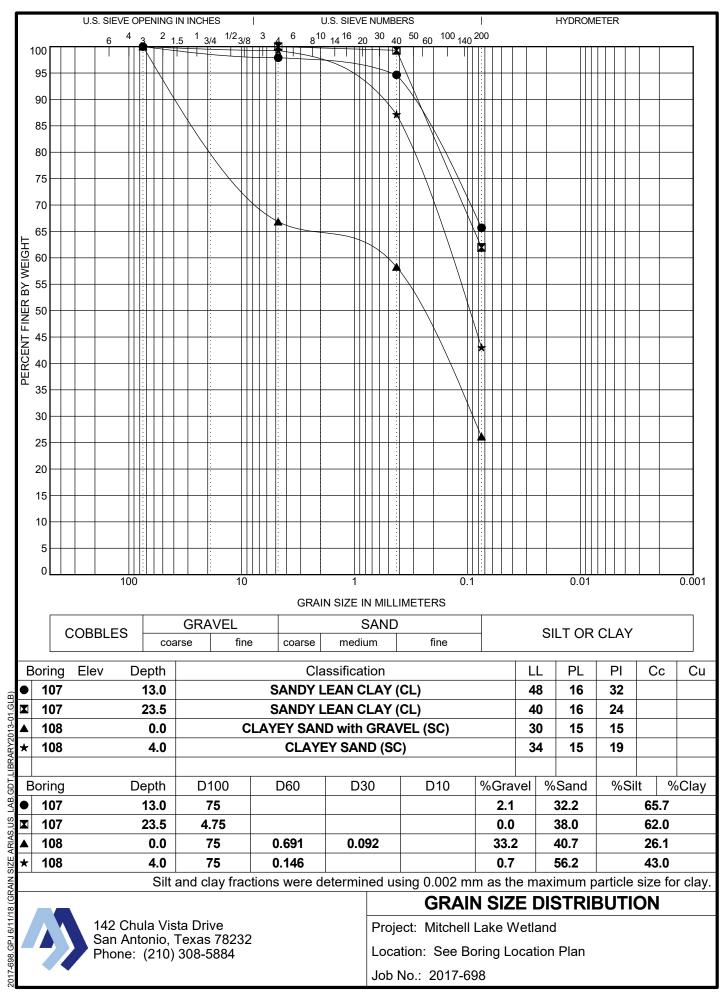

### FIELD EXPLORATION PROCEDURES

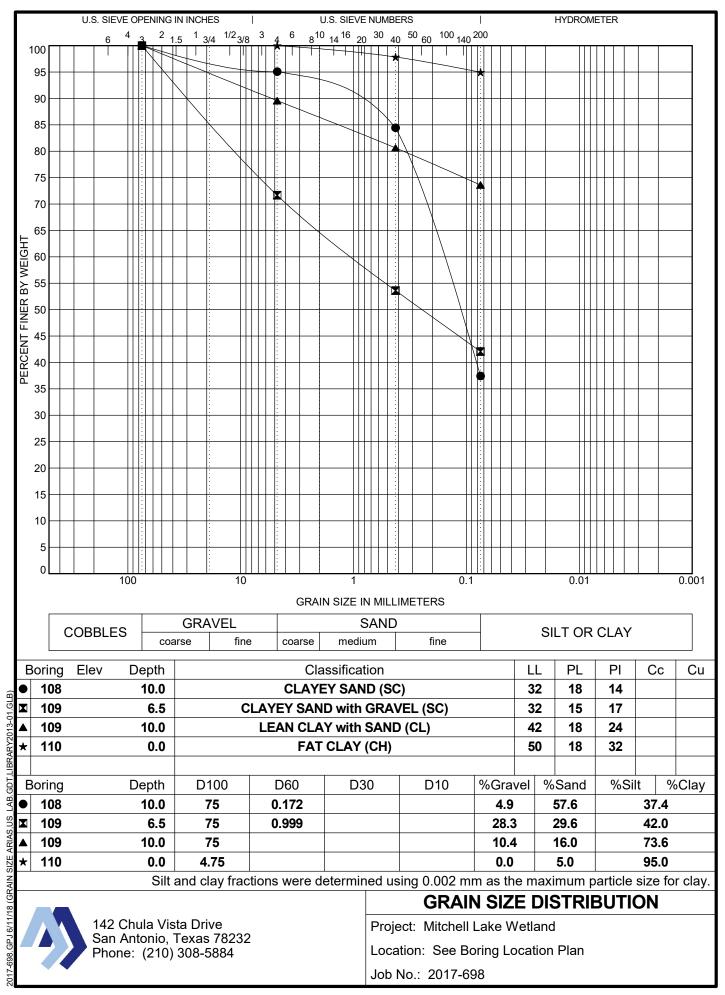

The field exploration program included drilling at selected locations within the site and intermittently sampling the encountered materials. The boreholes were drilled using either single flight auger (ASTM D 1452) or hollow-stem auger (ASTM D 6151). Samples of encountered materials were obtained using a split-barrel sampler while performing the Standard Penetration Test (ASTM D 1586), or by taking material from the auger as it was advanced (ASTM D 1452). The sample depth interval and type of sampler used is included on the soil boring log. Arias' field representative visually logged each recovered sample and placed a portion of the recovered sampled into a plastic bag for transport to our laboratory.

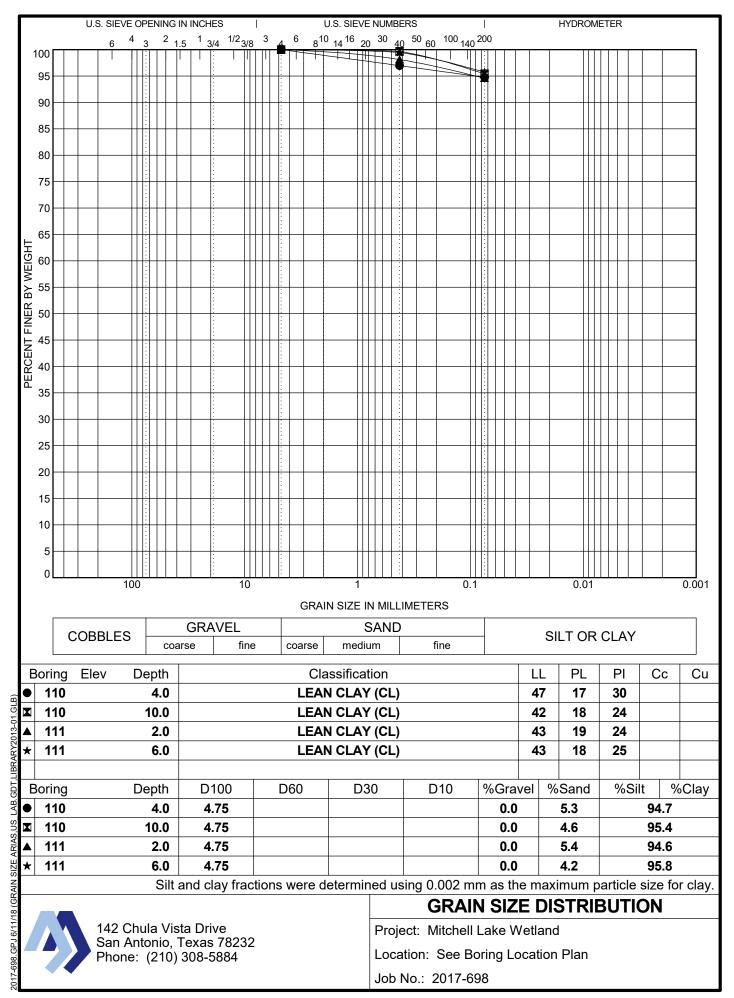

SPT N values and blow counts for those intervals where the sampler could not be advanced for the required 18-inch penetration are shown on the soil boring log. If the test was terminated during the 6-inch seating interval or after 10 hammer blows were applied used and no advancement of the sampler was noted, the log denotes this condition as blow count during seating penetration. Penetrometer readings recorded for thin-walled tube samples that remained intact also are shown on the soil boring log.

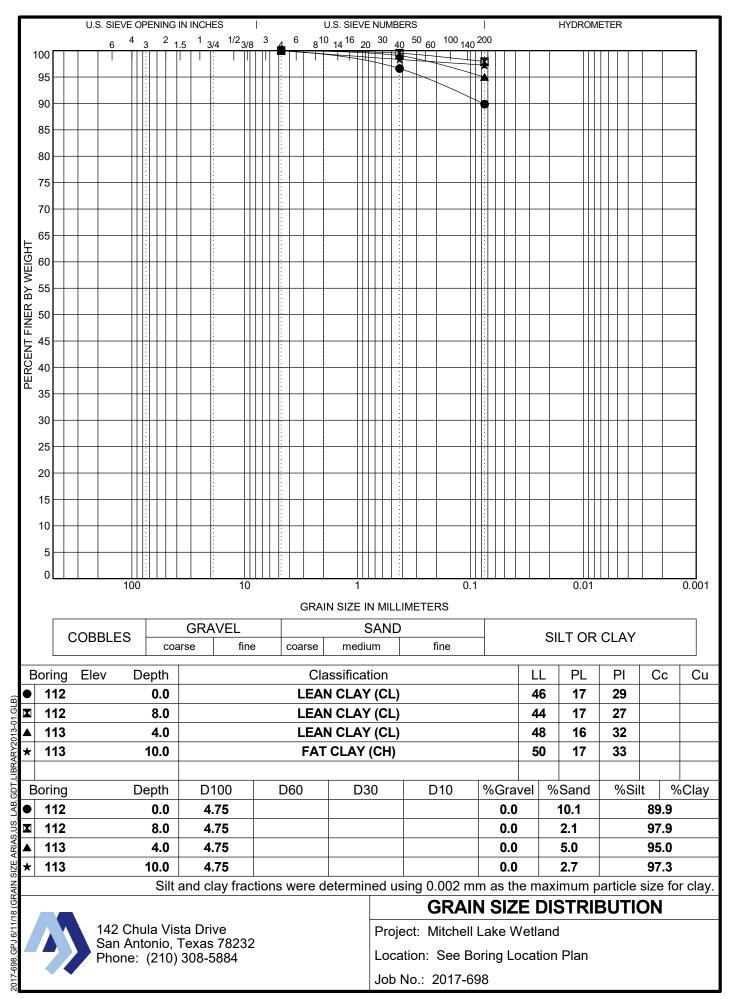

# APPENDIX D: SIEVE ANALYSIS TEST RESULTS

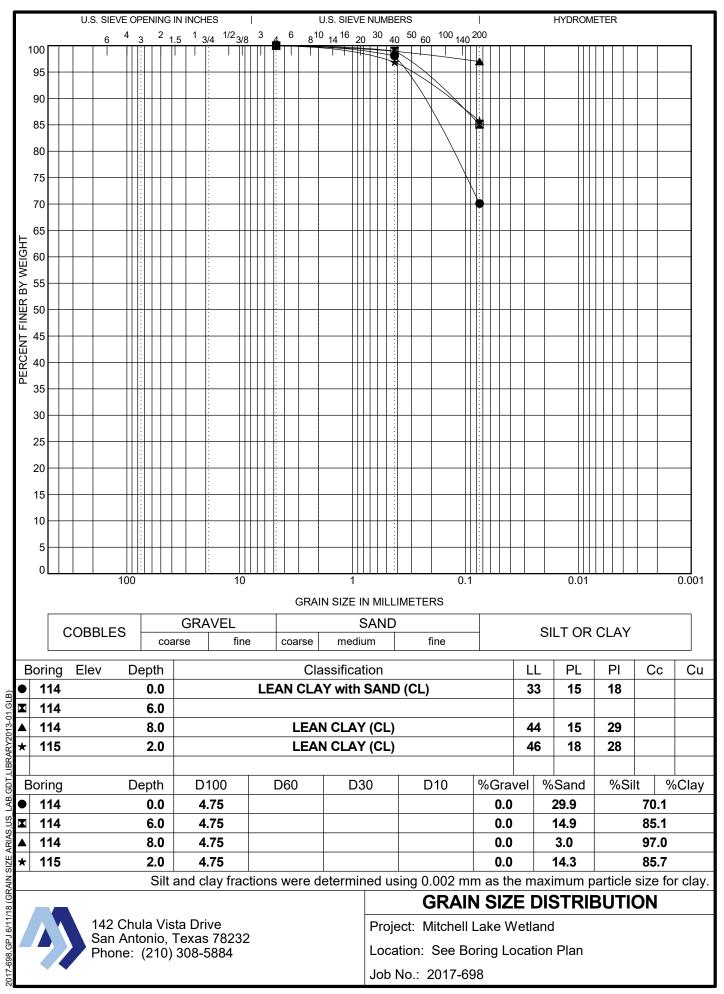


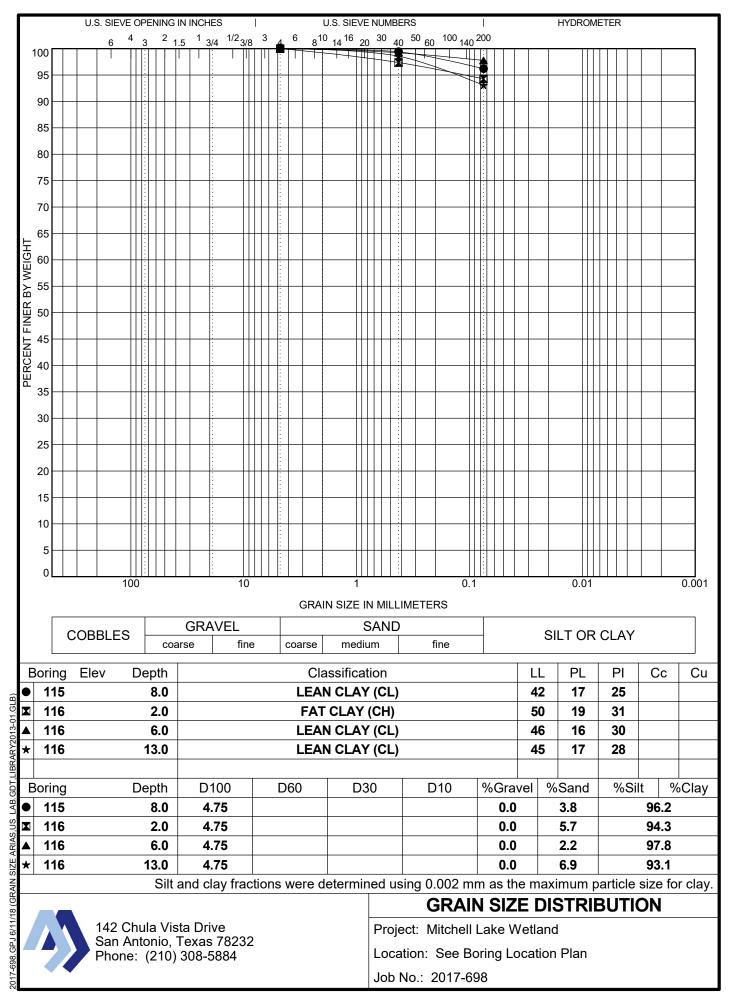



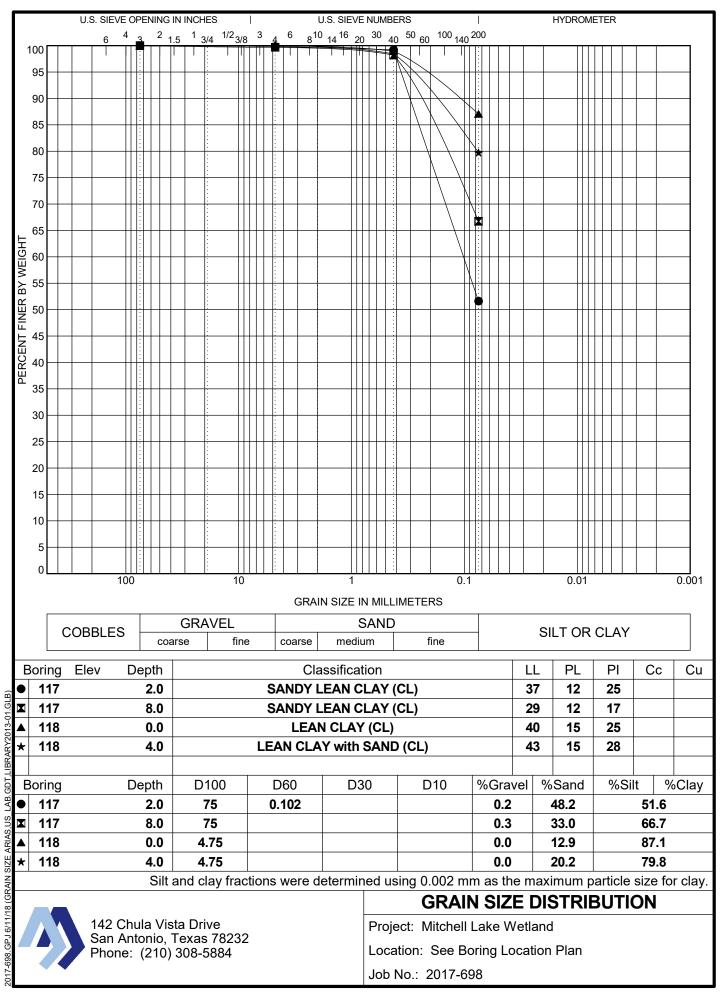



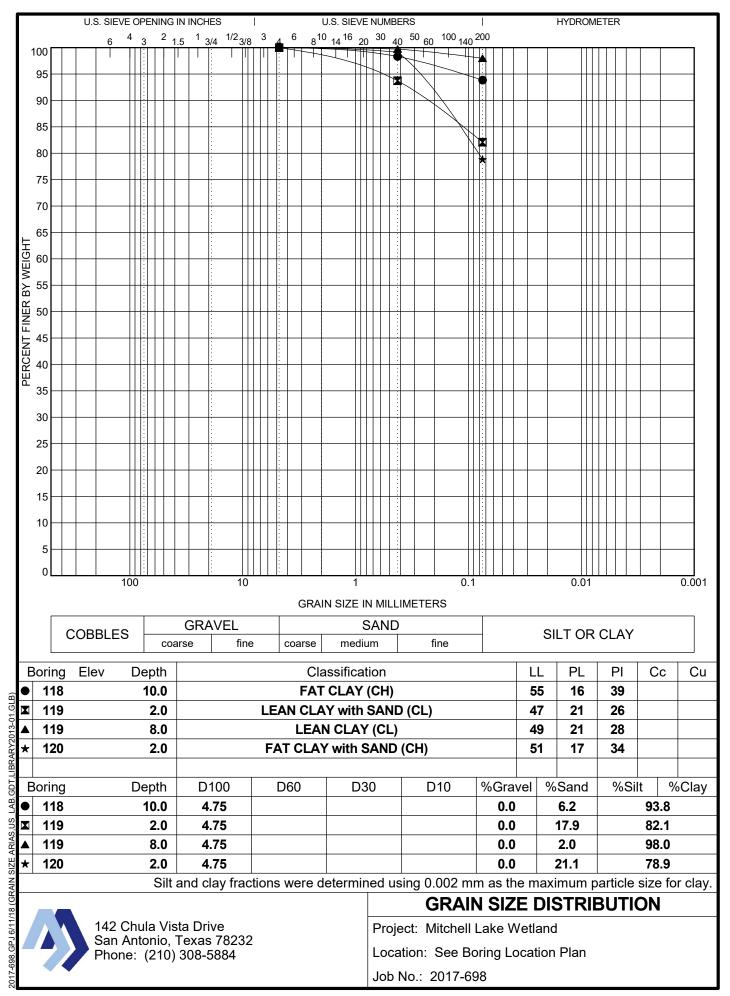



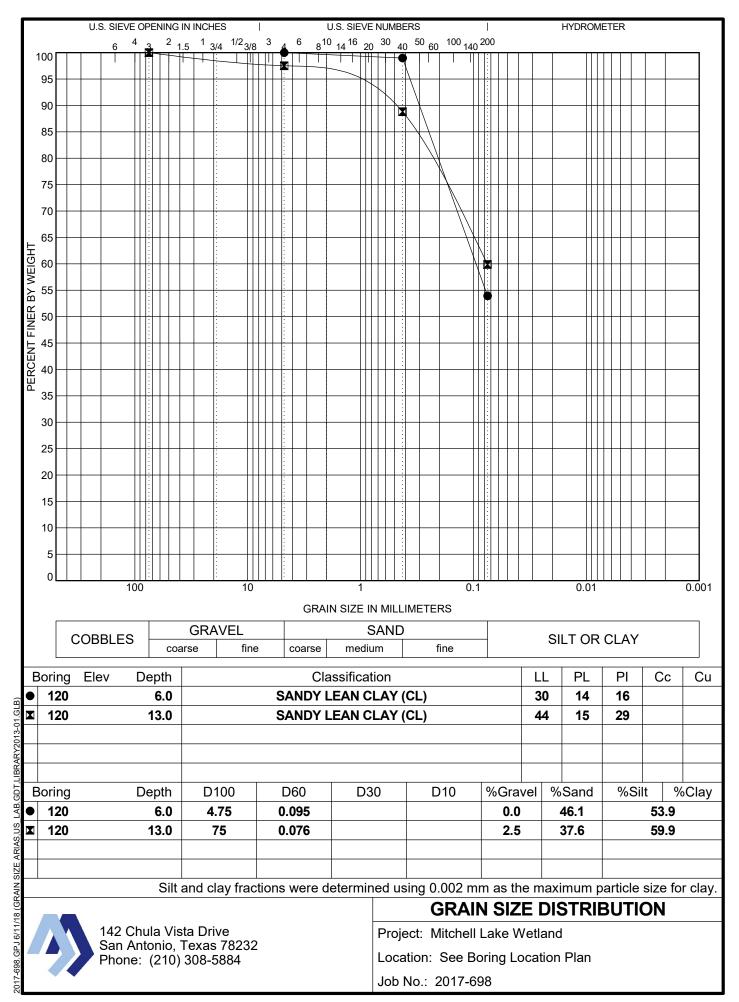



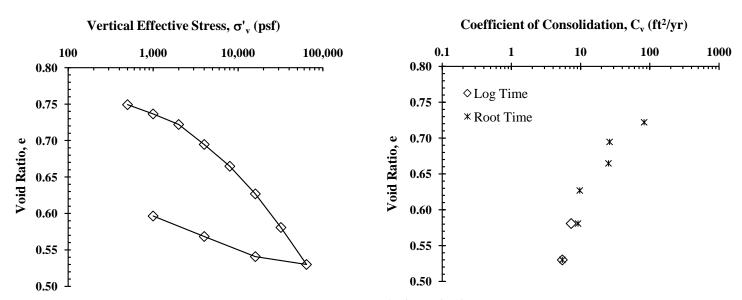












# APPENDIX E: ONE-DIMENSIONAL CONSOLIDATION TEST RESULTS



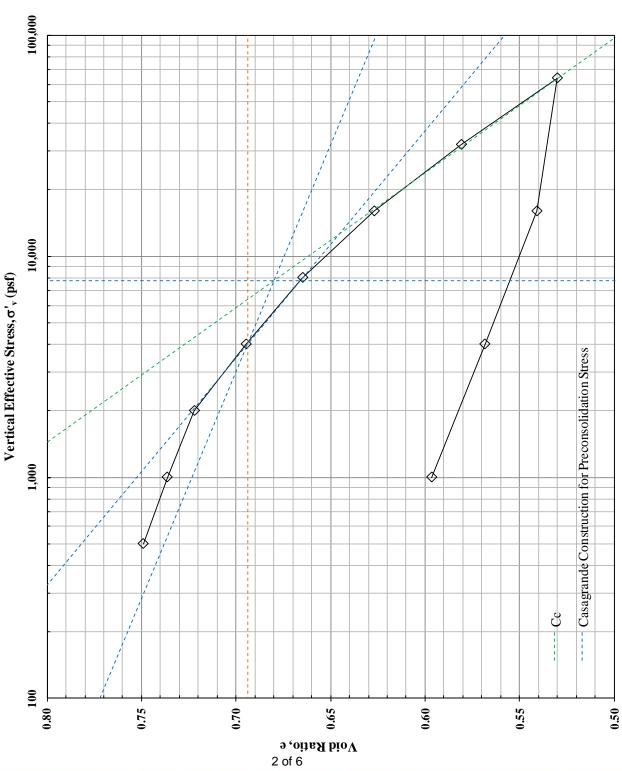
Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-101 (6 - 8) TRI Log No.: 35800.3 Test Method: ASTM D 2435, Method B

Soil Specimen Properties			
Initial Specimen Water Content (%)	22.1	(psf)	(
Final Specimen Water Content (%)	20.2	Initial	0.7
Specimen Diameter (in)	2.499	500	0.7
Initial Specimen Height (in)	1.003	1,000	0.7
Final Specimen Height (in)	0.912	2,000	0.7
Final Differential Height (in)	0.091	4,000	0.6
Initial Dry Unit Weight, $\gamma_0  lb_f / ft^3$	92.4	8,000	0.6
Final Dry Unit Weight, γ _f lb _f /ft ³	103.6	16,000	0.6
Initial Void Ratio, e _o	0.790	32,000	0.5
Final Void Ratio, e _f	0.596	64,000	0.5
Initial Degree of Saturation (%)	74.2	16,000	0.5
Preconsolidation Pressure (psf)	≈7800	4,000	0.5
Swell Pressure (psf), Maximum Measured	185	1,000	0.5
Compression Index, C _c	0.164		
Recompression Index, C _r	0.018		

$\sigma'_{v}$	e	Strain, ε	C _v (ft ² /year)		
(psf)	(-)	(%)	Log Time	Root Time	
Initial	0.790	0.0	-	-	
500	0.749	2.3	-	-	
1,000	0.736	3.0	-	-	
2,000	0.722	3.8	-	83	
4,000	0.695	5.3	-	26	
8,000	0.665	7.0	-	25	
16,000	0.627	9.1	-	9.7	
32,000	0.581	11.7	7.3	9.2	
64,000	0.530	14.5	5.4	5.4	
16,000	0.541	13.9	-	-	
4,000	0.568	12.4	-	-	
1,000	0.596	10.8	-	-	



The undisturbed specimen was provided by the client. The specimen was trimmed using a trimming turntable and mounted. The specimen was inundated with tap water during testing. Coefficient of Consolidation was determined using the Log Time and Root Time Methods. A specific gravity of 2.75 ——was assumed for weight-volume calculations. Calculations include machine deflections measured at each loading step. The preconsolidation pressure was determined using the Casagrande construction technique.

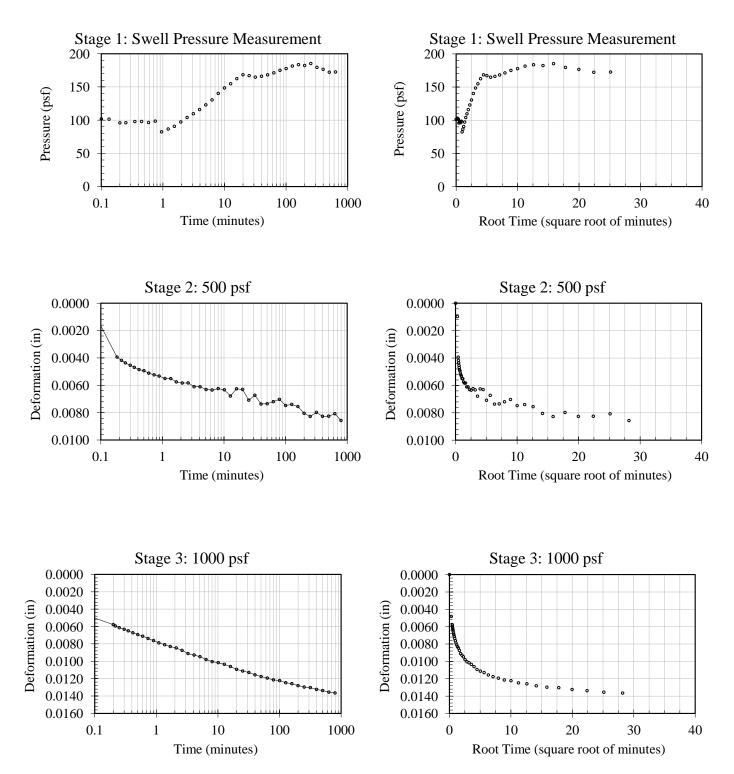

Jeffrey A. Kuhn, Ph.D., P.E., 3/26/2018 Quality Review/Date

### 1 of 6

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



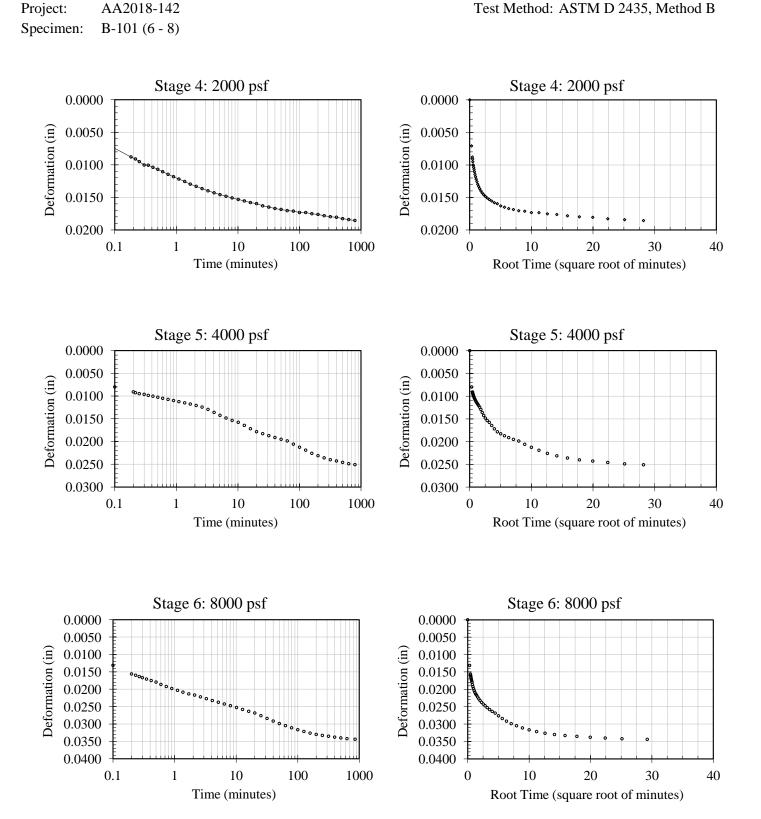
Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-101 (6 - 8) TRI Log No.: 35800.3 Test Method: ASTM D 2435, Method B




The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.




Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-101 (6 - 8) TRI Log No.: 35800.3 Test Method: ASTM D 2435, Method B



3 of 6

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

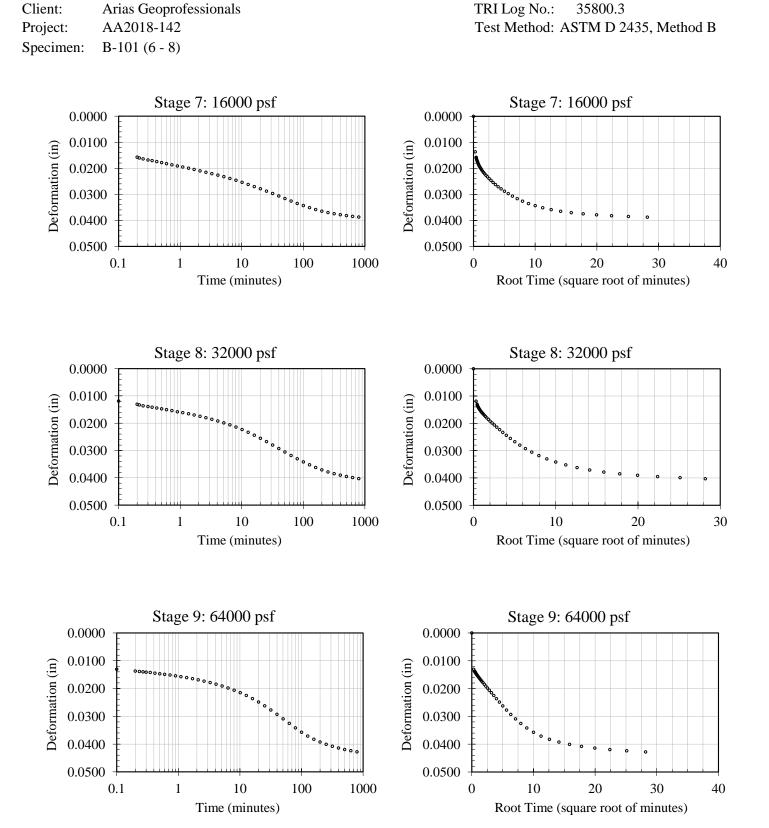




TRI Log No.:

35800.3

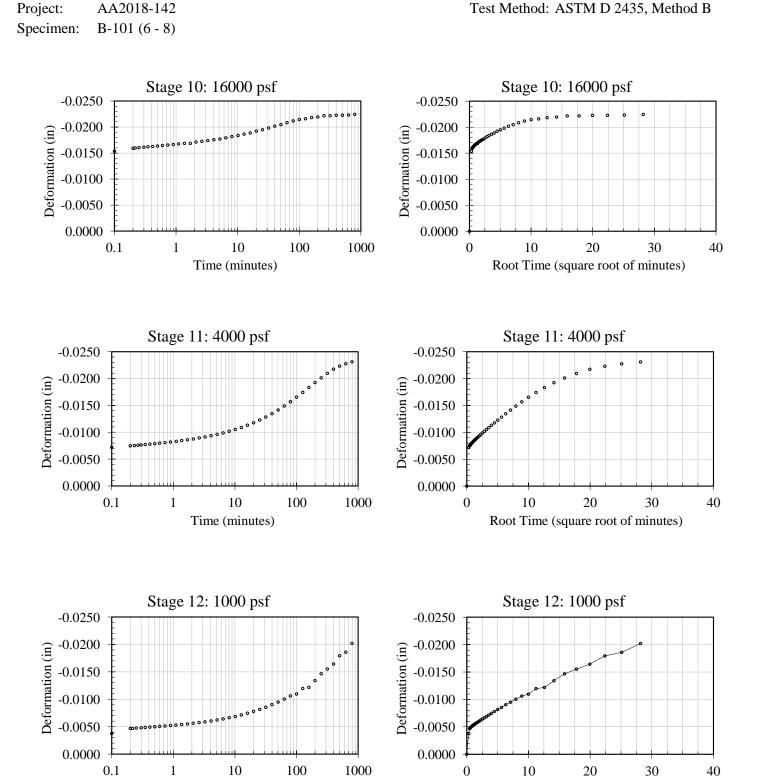
Client:


Arias Geoprofessionals

4 of 6

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.






5 of 6

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.





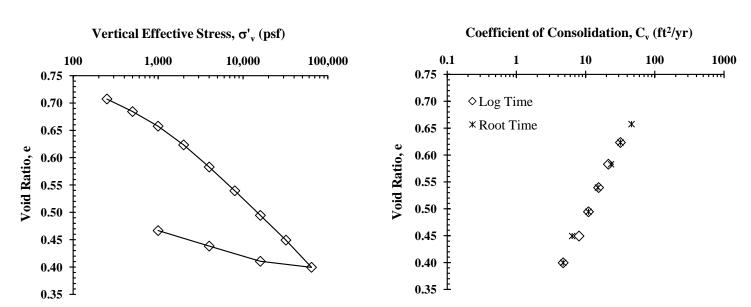
TRI Log No.:

35800.3

Root Time (square root of minutes)

Client:

Arias Geoprofessionals


6 of 6 The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

Time (minutes)



Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-103 (13 - 15) TRI Log No.: 35800.1 Test Method: ASTM D 2435, Method B

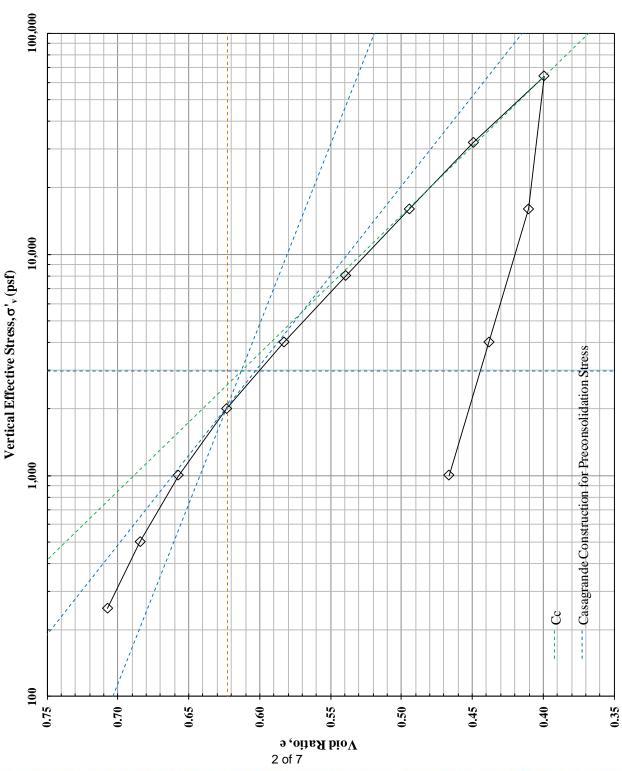
Soil Specimen Properties	$\sigma'_{v}$	e	Strain, $\epsilon$ C _v (ft ² /year)		²/year)	
Initial Specimen Water Content (%)	21.1	(psf)	(-)	(%)	Log Time	Root Time
Final Specimen Water Content (%)	16.9	Initial	0.747	0.0	-	-
Specimen Diameter (in)	2.497	250	0.707	2.2	-	-
Initial Specimen Height (in)	0.999	500	0.684	3.6	-	-
Final Specimen Height (in)	0.854	1,000	0.658	5.1	-	46
Final Differential Height (in)	0.144	2,000	0.623	7.1	32	32
Initial Dry Unit Weight, $\gamma_0  lb_f/ft^3$	94.7	4,000	0.583	9.4	21	23
Final Dry Unit Weight, $\gamma_f  lb_f / ft^3$	112.7	8,000	0.539	11.9	15	15
Initial Void Ratio, e _o	0.747	16,000	0.494	14.4	11	11
Final Void Ratio, e _f	0.467	32,000	0.449	17.0	8.0	6.4
Initial Degree of Saturation (%)	74.9	64,000	0.400	19.9	4.7	4.7
Preconsolidation Pressure (psf)	≈3000	16,000	0.410	19.2	-	-
Swell Pressure (psf), Maximum Measured	113	4,000	0.438	17.6	-	-
Compression Index, C _c	0.160	1,000	0.467	16.0	-	-
Recompression Index, C _r	0.165					



The undisturbed specimen was provided by the client. The specimen was trimmed using a trimming turntable and mounted. The specimen was inundated with tap water during testing. Coefficient of Consolidation was determined using the Log Time and Root Time Methods. A specific gravity of 2.75 — was assumed for weight-volume calculations. Calculations include machine deflections measured at each loading step. The preconsolidation pressure was determined using the Casagrande construction technique.

Jeffrey A. Kuhn, Ph.D., P.E., 3/26/2018 Quality Review/Date

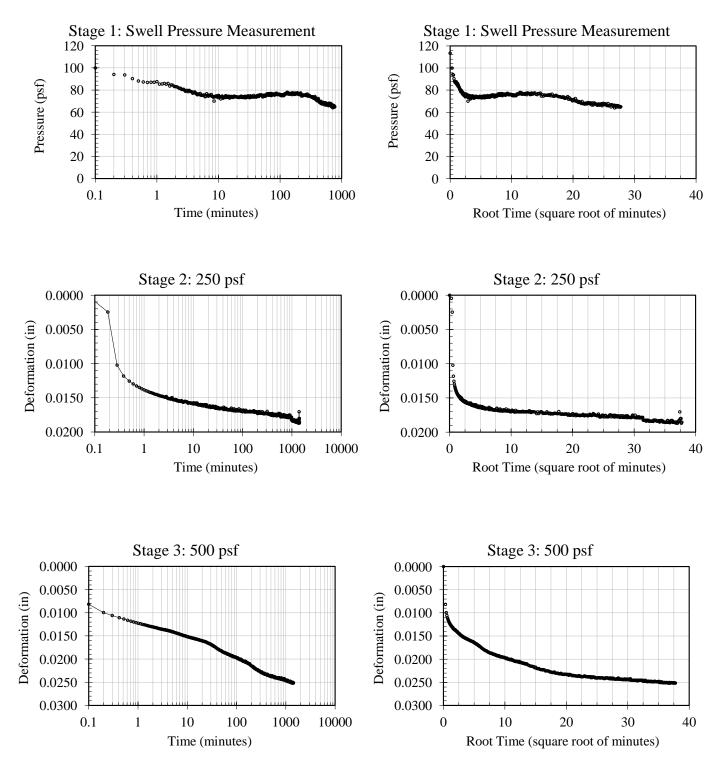
### 1 of 7


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST OR 512.263.2101

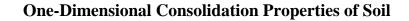


Client:Arias GeoprofessionalsProject:AA2018-142Specimen:B-103 (13 - 15)

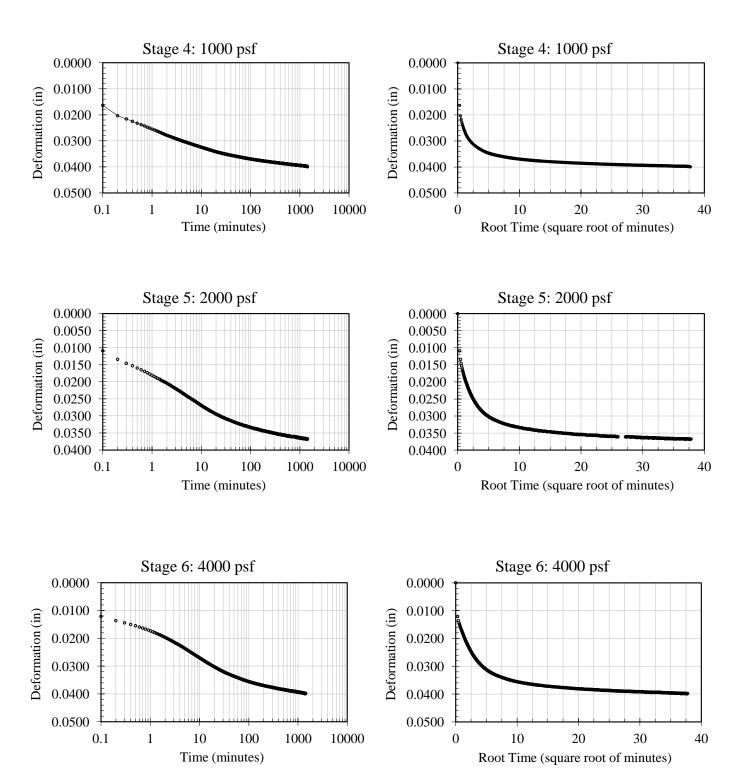

TRI Log No.: 35800.1 Test Method: ASTM D 2435, Method B



The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

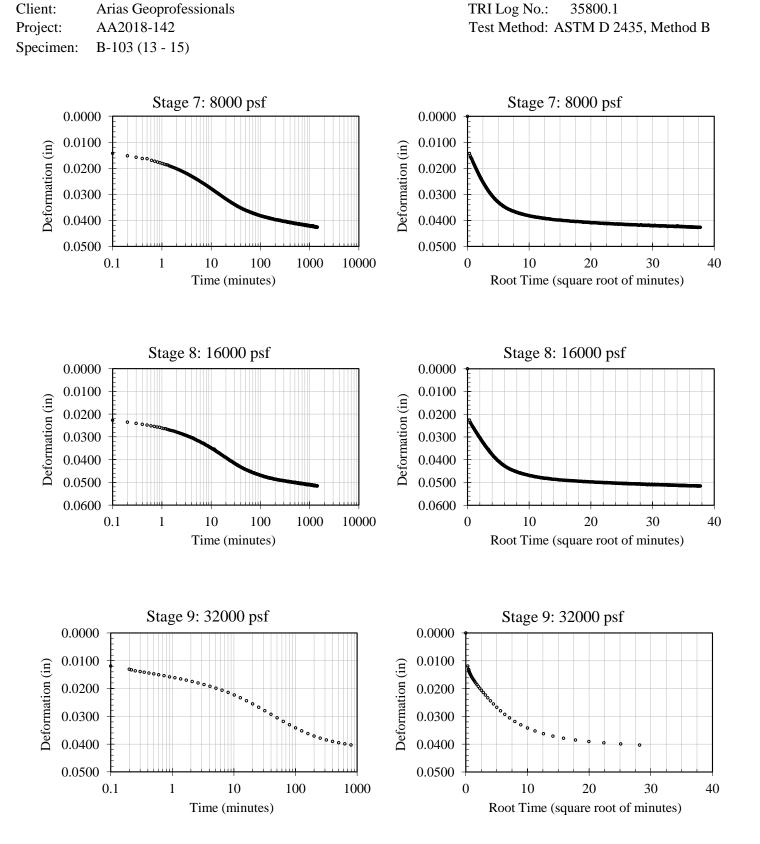



Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-103 (13 - 15) TRI Log No.: 35800.1 Test Method: ASTM D 2435, Method B




The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

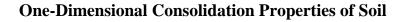




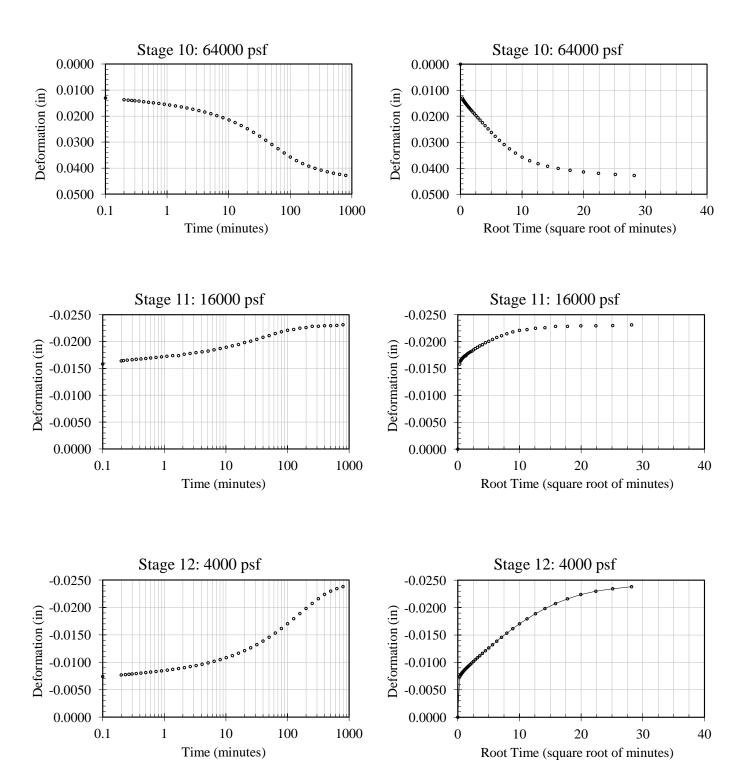

Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-103 (13 - 15) TRI Log No.: 35800.1 Test Method: ASTM D 2435, Method B



The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.



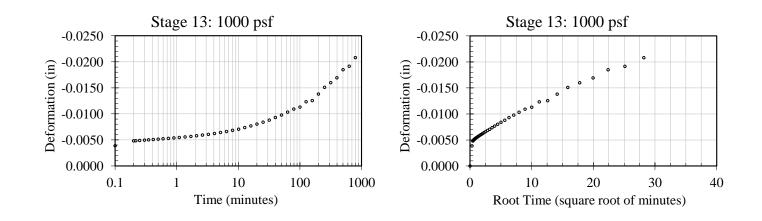




5 of 7

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.






Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-103 (13 - 15) TRI Log No.: 35800.1 Test Method: ASTM D 2435, Method B

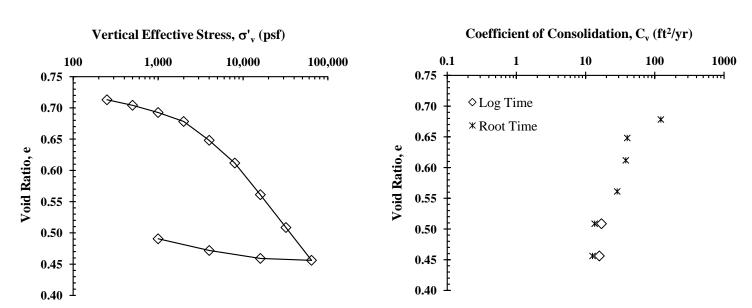


6 of 7



Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-103 (13 - 15) TRI Log No.: 35800.1 Test Method: ASTM D 2435, Method B




The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

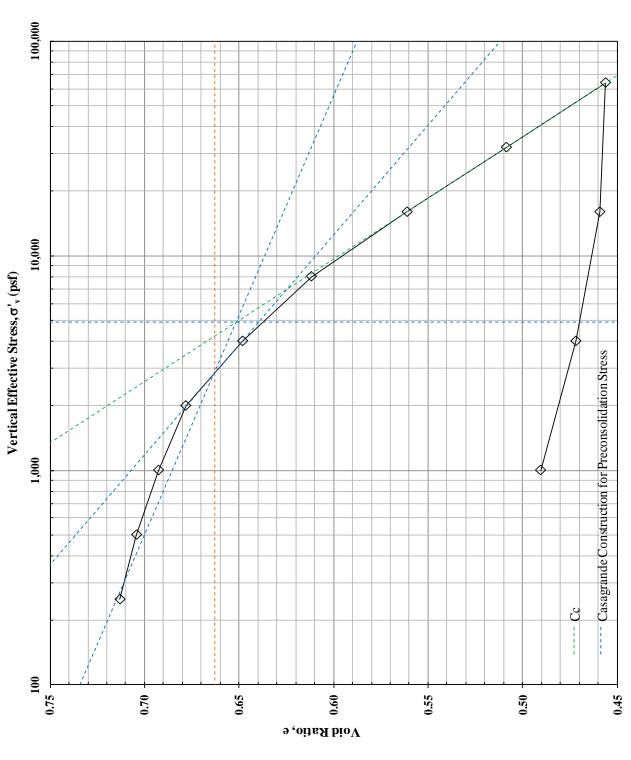
TRI ENVIRONMENTAL, INC. 9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA | PH: 800.880.TEST or 512.263.2101



Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-104 (28 - 30) TRI Log No.: 35800.4 Test Method: ASTM D 2435, Method B

Soil Specimen Properties		$\sigma'_{v}$	e	Strain, ε	$C_v (ft^2)$	/year)
Initial Specimen Water Content (%)	25.7	(psf)	(-)	(%)	Log Time	Root Time
Final Specimen Water Content (%)	20.2	Initial	0.753	0.0	-	-
Specimen Diameter (in)	2.499	250	0.713	2.3	-	-
Initial Specimen Height (in)	0.995	500	0.704	2.8	-	-
Final Specimen Height (in)	0.862	1,000	0.693	3.5	-	-
Final Differential Height (in)	0.133	2,000	0.678	4.3	-	120
Initial Dry Unit Weight, $\gamma_0  \text{lb}_{f}/\text{ft}^3$	94.3	4,000	0.648	6.0	-	40
Final Dry Unit Weight, $\gamma_f  lb_f / ft^3$	110.9	8,000	0.612	8.1	-	38
Initial Void Ratio, e _o	0.753	16,000	0.561	11.0	-	29
Final Void Ratio, e _f	0.491	32,000	0.509	14.0	17	14
Initial Degree of Saturation (%)	90.4	64,000	0.456	17.0	16	13
Preconsolidation Pressure (psf)	≈4900	16,000	0.459	16.8	-	-
Swell Pressure (psf), Maximum Measured	<100	4,000	0.472	16.1	-	-
Compression Index, C _c	0.175	1,000	0.491	15.0	-	-
Recompression Index, C _r	0.174	•	-	-		-



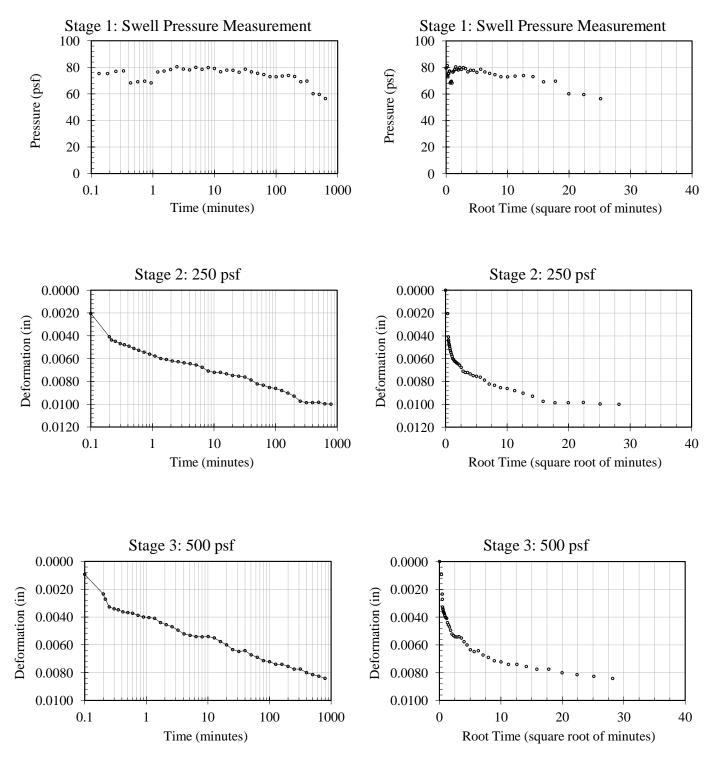

The undisturbed specimen was provided by the client. The specimen was trimmed using a trimming turntable and mounted. The specimen was inundated with tap water during testing. Coefficient of Consolidation was determined using the Log Time and Root Time Methods. A specific gravity of 2.75 Use assumed for weight-volume calculations. Calculations include machine deflections measured at each loading step. The preconsolidation pressure was determined using the Casagrande construction technique.

Jeffrey A. Kuhn, Ph.D., P.E., 3/26/2018 Quality Review/Date

#### 1 of 7



Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-104 (28 - 30) TRI Log No.: 35800.4 Test Method: ASTM D 2435, Method B

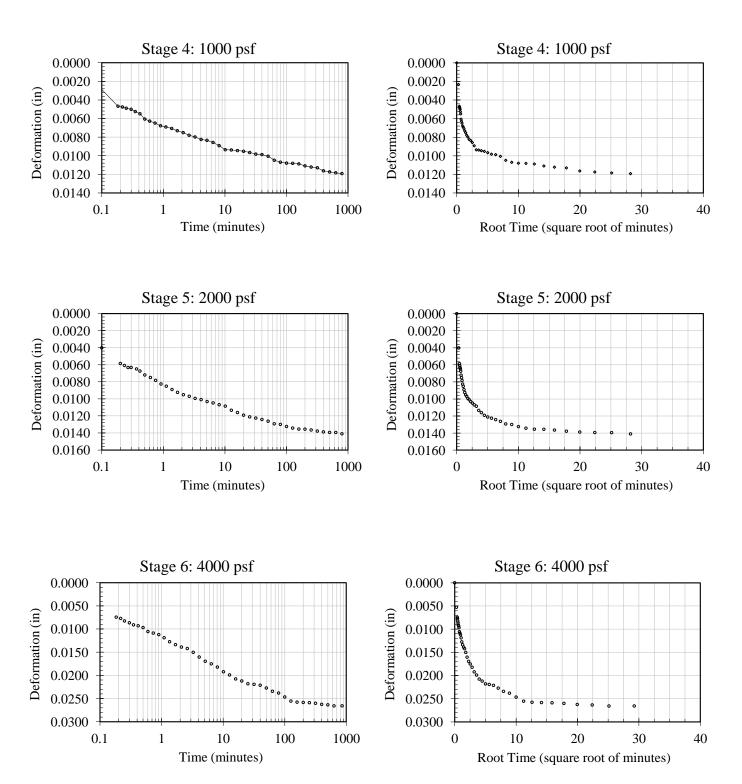



2 of 7



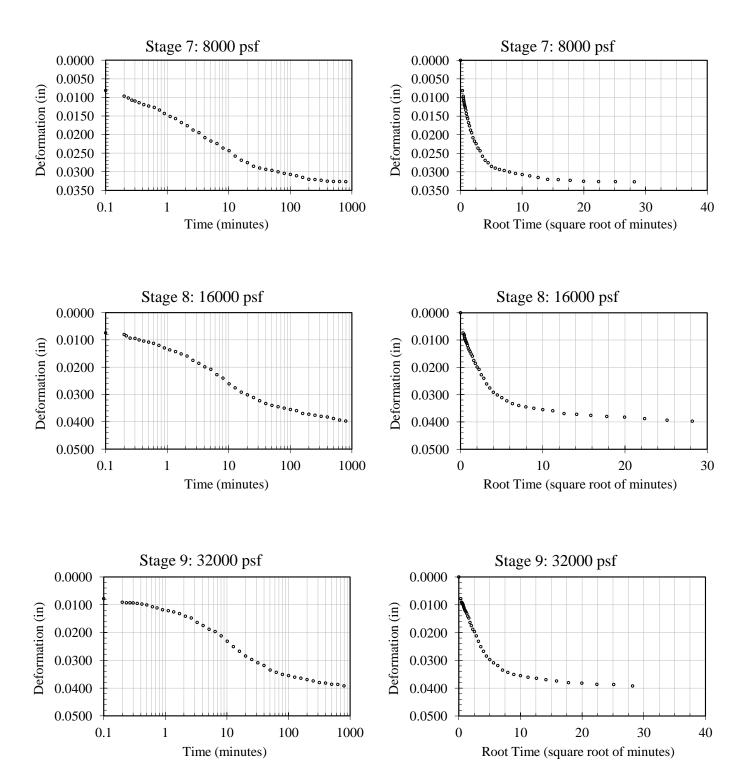
Client:Arias GeoprofessionalsProject:AA2018-142Specimen:B-104 (28 - 30)

TRI Log No.: 35800.4 Test Method: ASTM D 2435, Method B

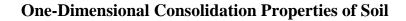



3 of 7

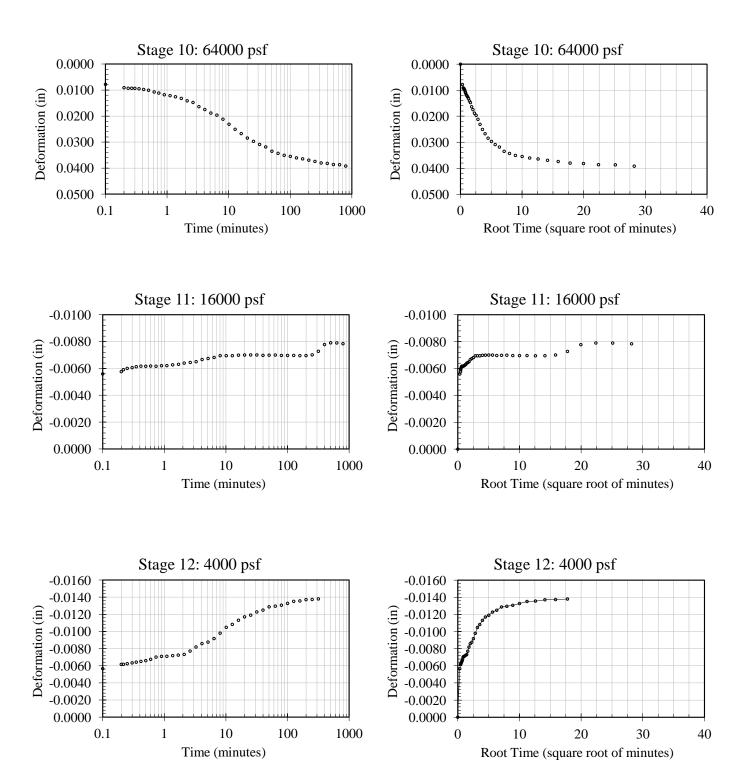
The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.




Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-104 (28 - 30) TRI Log No.: 35800.4 Test Method: ASTM D 2435, Method B





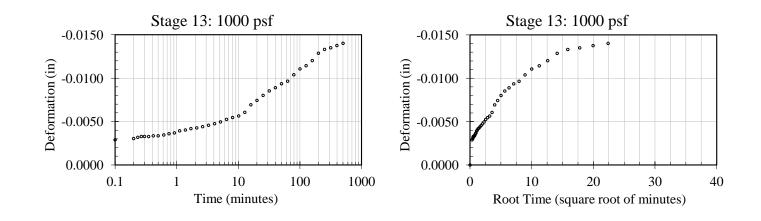


Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-104 (28 - 30) TRI Log No.: 35800.4 Test Method: ASTM D 2435, Method B







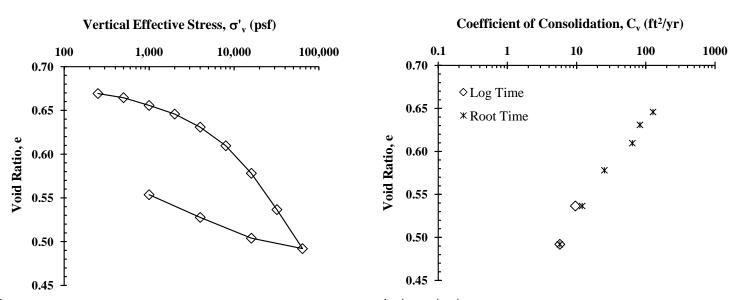
Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-104 (28 - 30) TRI Log No.: 35800.4 Test Method: ASTM D 2435, Method B




6 of 7



Client:Arias GeoprofessionalsProject:AA2018-142Specimen:B-104 (28 - 30)


TRI Log No.: 35800.4 Test Method: ASTM D 2435, Method B

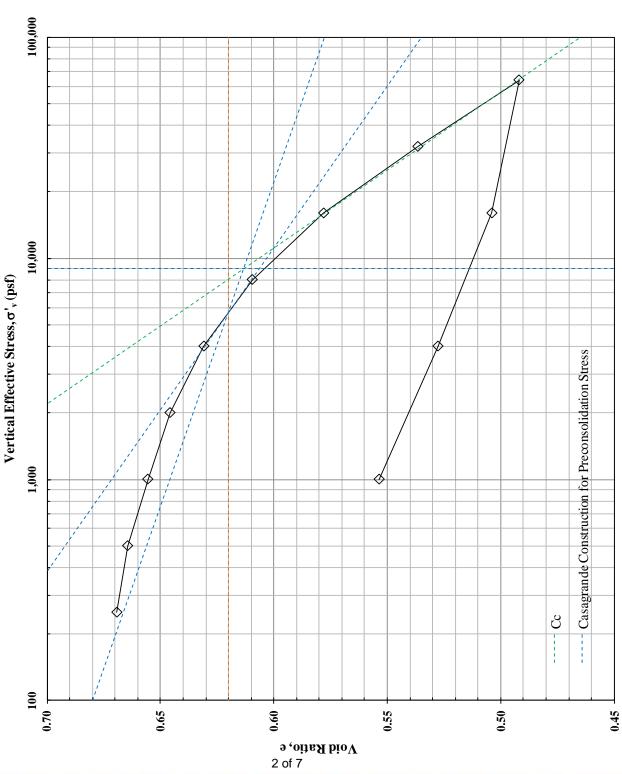




Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-105 (23 - 25) TRI Log No.: 35800.2 Test Method: ASTM D 2435, Method B

Soil Specimen Properties		$\sigma'_{v}$	e	Strain, ε	$C_v (ft^2)$	² /year)
Initial Specimen Water Content (%)	20.8	(psf)	(-)	(%)	Log Time	Root Time
Final Specimen Water Content (%)	18.7	Initial	0.704	0.0	-	-
Specimen Diameter (in)	2.486	250	0.669	2.0	-	-
Initial Specimen Height (in)	1.005	500	0.664	2.3	-	-
Final Specimen Height (in)	0.934	1,000	0.656	2.8	-	-
Final Differential Height (in)	0.071	2,000	0.646	3.4	-	130
Initial Dry Unit Weight, $\gamma_0  lb_f/ft^3$	97.1	4,000	0.631	4.3	-	82
Final Dry Unit Weight, $\gamma_f  lb_f / ft^3$	106.4	8,000	0.610	5.5	-	64
Initial Void Ratio, e _o	0.704	16,000	0.578	7.4	-	25
Final Void Ratio, e _f	0.554	32,000	0.537	9.8	9.6	12
Initial Degree of Saturation (%)	78.5	64,000	0.492	12.4	5.7	5.7
Preconsolidation Pressure (psf)	≈9000	16,000	0.504	11.7	-	-
Swell Pressure (psf), Maximum Measured	132	4,000	0.528	10.3	-	-
Compression Index, C _c	0.142	1,000	0.554	8.8	-	-
Recompression Index, C _r	0.148		-	-	•	-



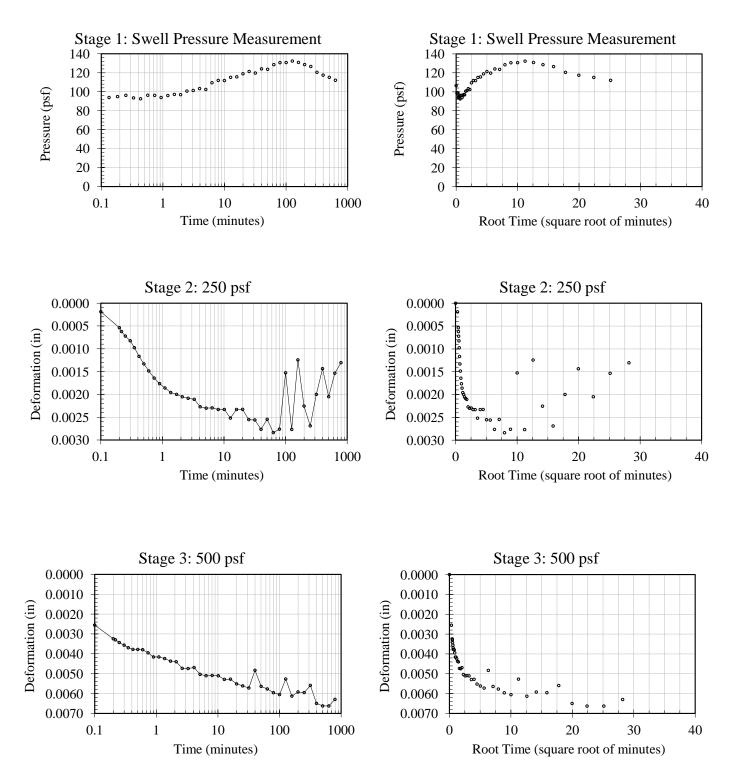

The undisturbed specimen was provided by the client. The specimen was trimmed using a trimming turntable and mounted. The specimen was inundated with tap water during testing. Coefficient of Consolidation was determined using the Log Time and Root Time Methods. A specific gravity of 2.75 Use assumed for weight-volume calculations. Calculations include machine deflections measured at each loading step. The preconsolidation pressure was determined using the Casagrande construction technique.

Jeffrey A. Kuhn, Ph.D., P.E., 3/26/2018 Quality Review/Date

### 1 of 7

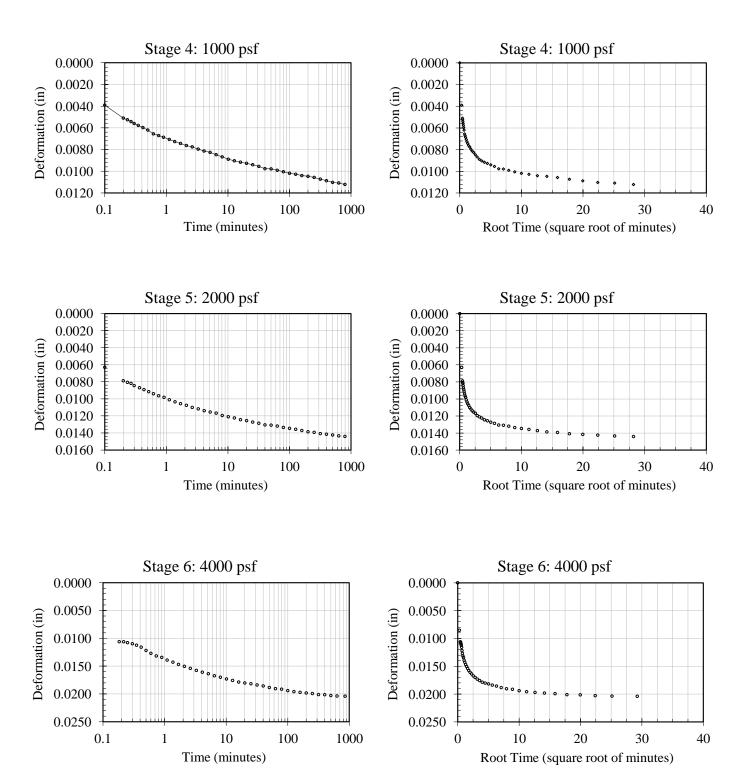


Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-105 (23 - 25) TRI Log No.: 35800.2 Test Method: ASTM D 2435, Method B




The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

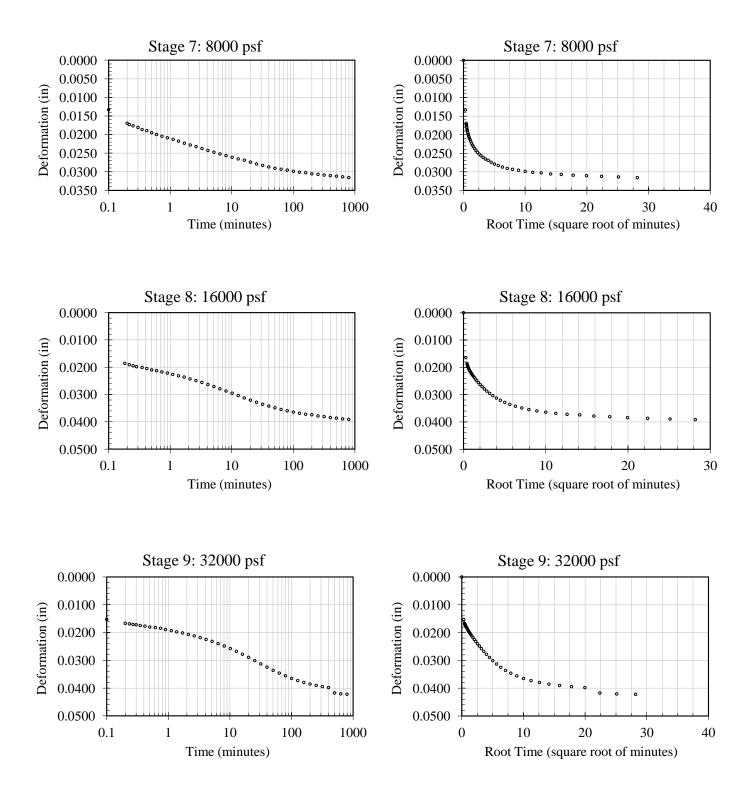



Client:Arias GeoprofessionalsProject:AA2018-142Specimen:B-105 (23 - 25)

TRI Log No.: 35800.2 Test Method: ASTM D 2435, Method B

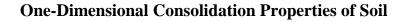




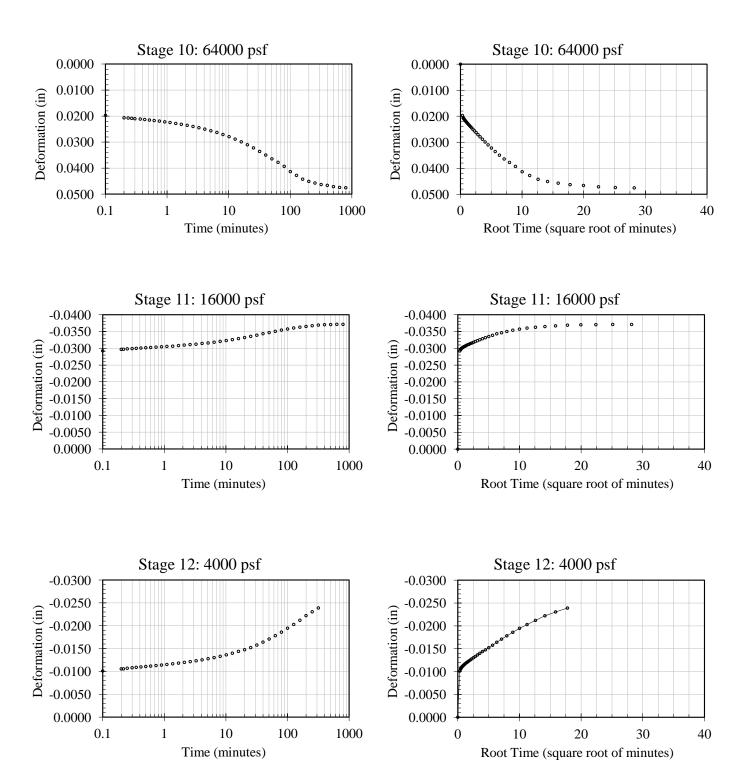

Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-105 (23 - 25) TRI Log No.: 35800.2 Test Method: ASTM D 2435, Method B



4 of 7



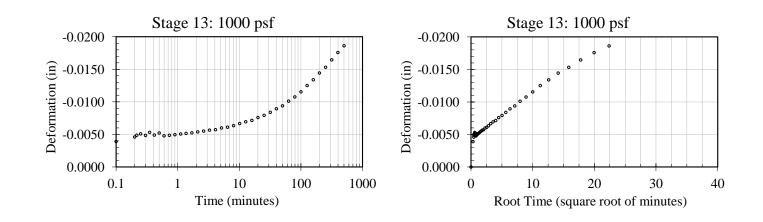

Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-105 (23 - 25) TRI Log No.: 35800.2 Test Method: ASTM D 2435, Method B




5 of 7

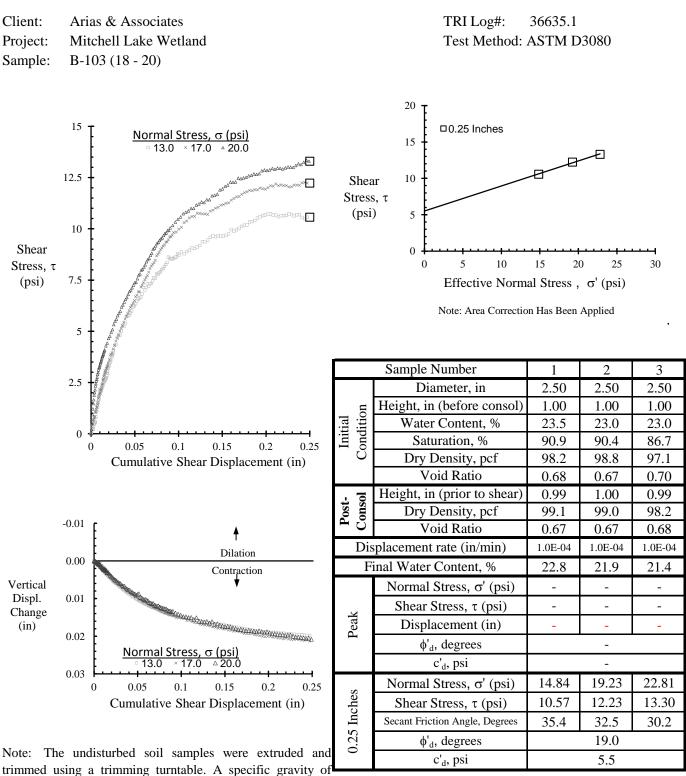





Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-105 (23 - 25) TRI Log No.: 35800.2 Test Method: ASTM D 2435, Method B



6 of 7



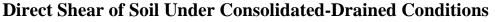

Client: Arias Geoprofessionals Project: AA2018-142 Specimen: B-105 (23 - 25) TRI Log No.: 35800.2 Test Method: ASTM D 2435, Method B

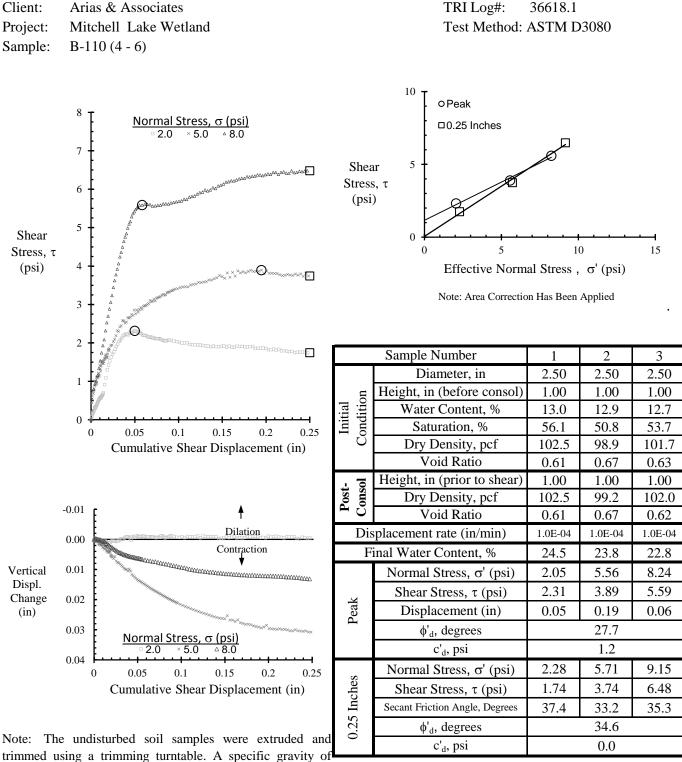


# APPENDIX F: DIRECT SHEAR TEST RESULTS






### **Direct Shear of Soil Under Consolidated-Drained Conditions**


2.65 was assumed for weight-volume calculations.

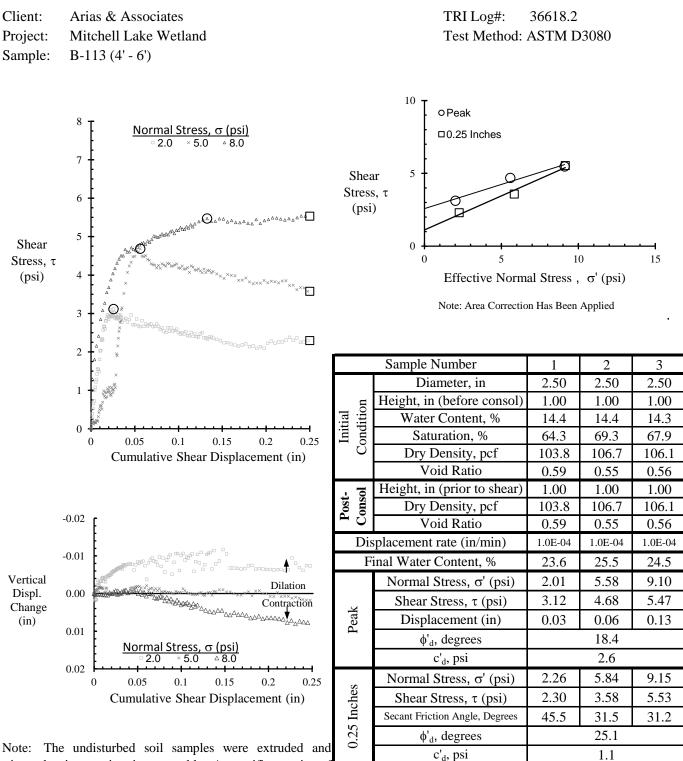
Analysis & Quality Review/Date

Jeffrey A. Kuhn, Ph.D., P.E., 4/27/18








2.65 was assumed for weight-volume calculations.

Analysis & Quality Review/Date

Jeffrey A. Kuhn, Ph.D., P.E., 4/27/18

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

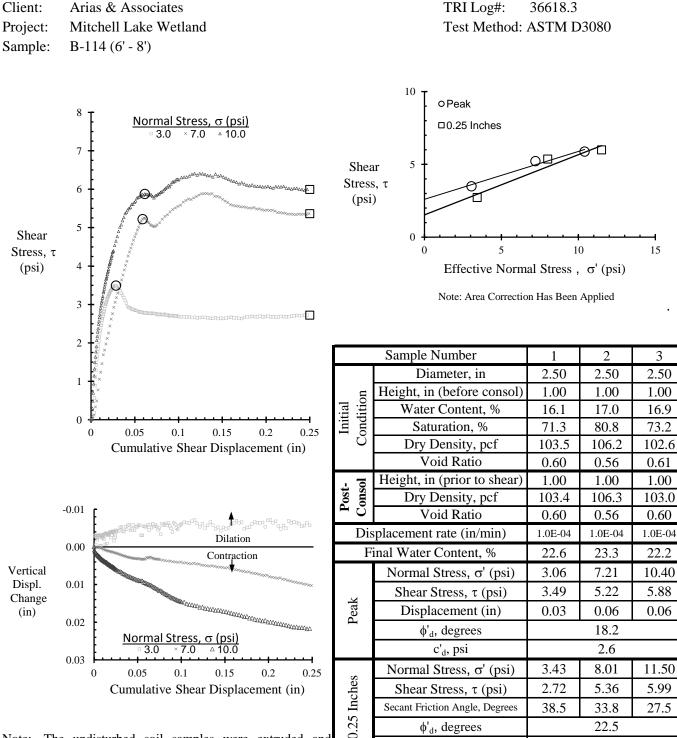




### **Direct Shear of Soil Under Consolidated-Drained Conditions**

trimmed using a trimming turntable. A specific gravity of 2.65 was assumed for weight-volume calculations.

Analysis & Quality Review/Date


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

9063 BEE CAVES RD. - AUSTIN, TX 78733 - USA PH: 800.880.TEST OR 512.263.2101

Jeffrey A. Kuhn, Ph.D., P.E., 4/27/18





**Direct Shear of Soil Under Consolidated-Drained Conditions** 

Note: The undisturbed soil samples were extruded and trimmed using a trimming turntable. A specific gravity of 2.65 was assumed for weight-volume calculations.

1.5

Analysis & Quality Review/Date

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

c'_d, psi

Jeffrey A. Kuhn, Ph.D., P.E., 4/27/18

# APPENDIX G: CONSOLIDATED-UNDRAINED TRIAXIAL TEST RESULTS

Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-102 (10 - 12) TRI Log #: 36618.7 Test Method: ASTM D4767 Mod

Specimens					
Identification	-	-	-		
Depth/Elev. (ft)	-	-	-		
Eff. Consol. Stress (psi)	6.0	10.0	13.0		
Initial Specime	n Propert	ies			
Avg. Diameter (in)	1.38	1.39	1.40		
Avg. Height (in)	2.80	2.55	2.38		
Avg. Water Content (%)	24.4	-	-		
Bulk Density (pcf)	121.8	132.1	139.9		
Dry Density (pcf)	97.9	-	-		
Saturation (%)	91.2	-	-		
Void Ratio, n	0.72	0.59	0.50		
Specific Gravity (Assumed)	2.70				
Total Back-Pressure (psi)	54.1	54.1	54.1		
B-Value, End of Saturation	0.96	-	-		

Test Setup					
Specimen Condition	Undisturbed / Intact				
Specimen Preparation	Trimmed				
Mounting Method	Wet				
Consolidation	Isotropic				

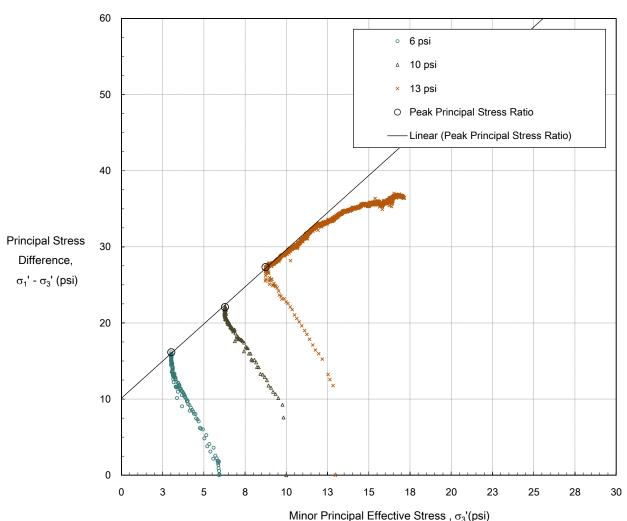
Post-Consolidation / Pre-Shear					
Void Ratio         0.59         0.50         0.41					
Area (in²)	1.41	1.45	1.47		

Shear / Post-Shear					
Avg. Water Content (%) 24.4					
Rate of Strain (%/hr)	0.50	0.50	0.50		

At Failure							
Failure Criterion: Peak Principal Stress	Differ	Difference, $(\sigma_1' - \sigma_3')_{max}$			Ratio, $(\sigma_1'/\sigma_3')_{max}$		
Axial Strain at Failure (%), $\epsilon_{a,f}$	-	-	-	1.2	1.3	0.7	
Minor Effective Stress (psi), $\sigma_{3'f}$	-	-	-	3.0	6.3	8.7	
Principal Stress Difference (psi), $(\sigma_1 - \sigma_3)_f$	-	-	-	16.2	22.1	27.3	
Pore Water Pressure, ∆u _f (psi)	-	-	-	2.9	3.7	4.2	
Major Effective Stress (psi), $\sigma_{1f}$	-	-	-	19.2	28.4	36.1	
Secant Friction Angle (degrees)	-	-	-	46.7	39.6	37.6	
Effective Friction Angle (degrees)		-			29.6		
Effective Cohesion (psi)		-			2.9		

Note: Multi-stage testing was performed for this sample. The first two stages were terminated in accordance with stress path tangency and/or peak principal stress ratio.

Please note that the presented M-C parameters are based on a linear regression in modified stress space, across all assigned effective consolidation stresses. This fit does not purported to capture typical curvature of envelopes that may, in particular, be observed across broader range in effective stresses. Please note that the stresses associated with peak principal stress ratioare presented in tabular form on the first page of the report. There are alternate interpretations to theses two failure criterion including but not limited to strain compatibility and post-peak.

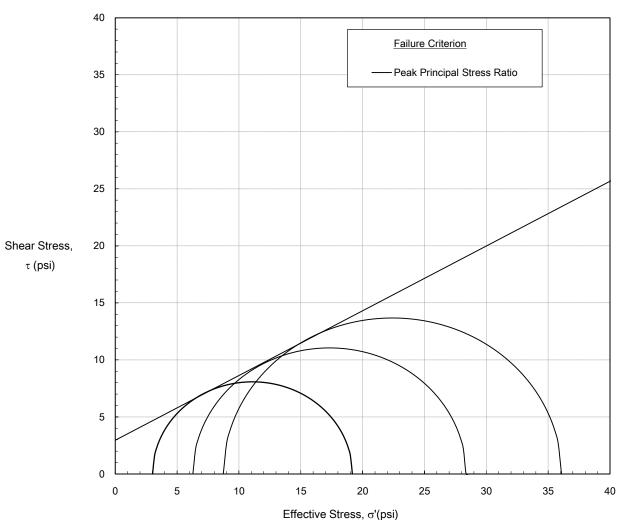

Jeffrey A. Kuhn , Ph.D., P.E., 4/27/2018

Analysis & Quality Review/Date

1 of 5



Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-102 (10 - 12) TRI Log #: 36618.7 Test Method: ASTM D4767 Mod

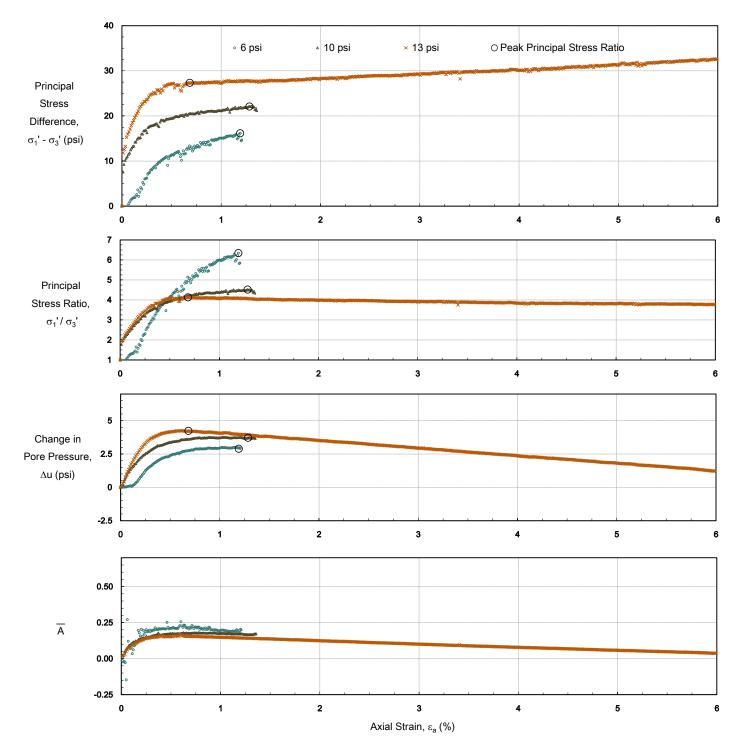



### Modified Mohr-Coulomb

Failure Criterion: Peak Principal Stress	Difference, $(\sigma_1'-\sigma_3')_{max}$	Ratio, (σ ₁ '/σ ₃ ') _{max}
Effective Friction Angle (deg)	-	29.6
Effective Cohesion (psi)	-	2.9



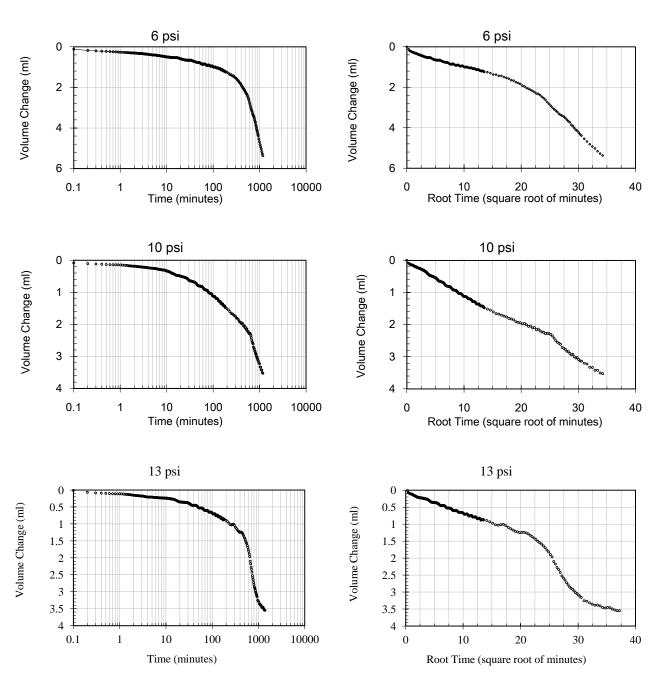
Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-102 (10 - 12) TRI Log #: 36618.7 Test Method: ASTM D4767 Mod




Mohr-Coulomb

Failure Criterion: Peak Principal Stress	Difference, $(\sigma_1'-\sigma_3')_{max}$	Ratio, $(\sigma_1'/\sigma_3')_{max}$
Effective Friction Angle (deg)	-	29.6
Effective Cohesion (psi)	-	2.9




Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-102 (10 - 12) TRI Log #: 36618.7 Test Method: ASTM D4767 Mod



4 of 5



Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-102 (10 - 12) TRI Log #: 36618.7 Test Method: ASTM D4767 Mod



Consolidation

5 of 5

Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-104 (33' - 35') TRI Log #: 36635.2 Test Method: ASTM D4767 Mod

Specimens					
Identification	-	-	-		
Depth/Elev. (ft)	-	-	-		
Eff. Consol. Stress (psi)	5.0	35.0	40.0		
Initial Specime	n Properti	ies			
Avg. Diameter (in)	2.05	2.07	2.12		
Avg. Height (in)	4.64	4.52	4.20		
Avg. Water Content (%)	21.7	-	-		
Bulk Density (pcf)	120.4	121.6	124.9		
Dry Density (pcf)	98.9	-	-		
Saturation (%)	83.4	-	-		
Void Ratio, n	0.70	0.69	0.64		
Specific Gravity (Assumed)	2.70				
Total Back-Pressure (psi)	54.1	54.1	54.1		
B-Value, End of Saturation	0.97	-	-		

Test Setup					
Specimen Condition	Undisturbed / Intact				
Specimen Preparation	Trimmed				
Mounting Method	Wet				
Consolidation	Isotropic				

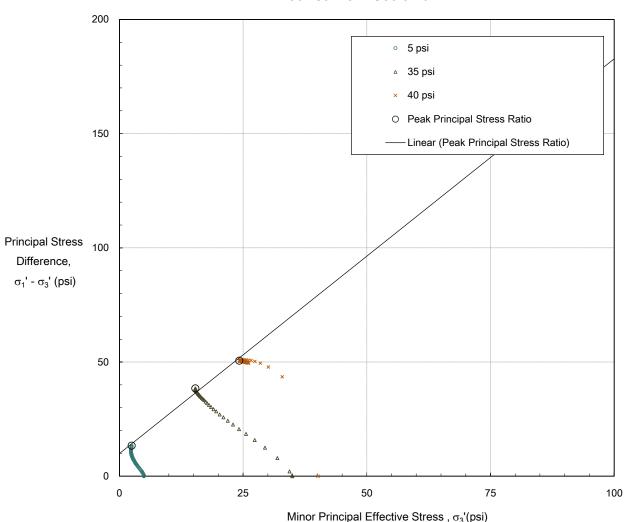
Post-Consolidation / Pre-Shear					
Void Ratio         0.69         0.64         0.62					
Area (in²)	3.29	3.31	3.49		

Shear / Post-Shear						
Avg. Water Content (%)	-	-	20.9			
Rate of Strain (%/hr)	0.50	0.50	0.50			

At Failure						
Failure Criterion: Peak Principal Stress	Differ	Difference, $(\sigma_1'-\sigma_3')_{max}$		Ratio, $(\sigma_1'/\sigma_3')_{max}$		
Axial Strain at Failure (%), $\epsilon_{a,f}$	-	-	-	1.6	4.5	4.7
Minor Effective Stress (psi), $\sigma_{3'f}$	-	-	-	2.5	15.3	24.2
Principal Stress Difference (psi), $(\sigma_1 - \sigma_3)_f$	-	-	-	13.4	38.5	50.6
Pore Water Pressure, ∆u _f (psi)	-	-	-	2.5	19.6	15.9
Major Effective Stress (psi), σ _{1'f}	-	-	-	15.9	53.8	74.8
Secant Friction Angle (degrees)	-	-	-	46.9	33.8	30.7
Effective Friction Angle (degrees)		-			27.6	
Effective Cohesion (psi)		-			3.0	

Note: Multi-stage testing was performed for this sample. The first two stages were terminated in accordance with stress path tangency and/or peak principal stress ratio.

Please note that the presented M-C parameters are based on a linear regression in modified stress space, across all assigned effective consolidation stresses. This fit does not purported to capture typical curvature of envelopes that may, in particular, be observed across broader range in effective stresses. Please note that the stresses associated with peak principal stress ratioare presented in tabular form on the first page of the report. There are alternate interpretations to theses two failure criterion including but not limited to strain compatibility and post-peak.

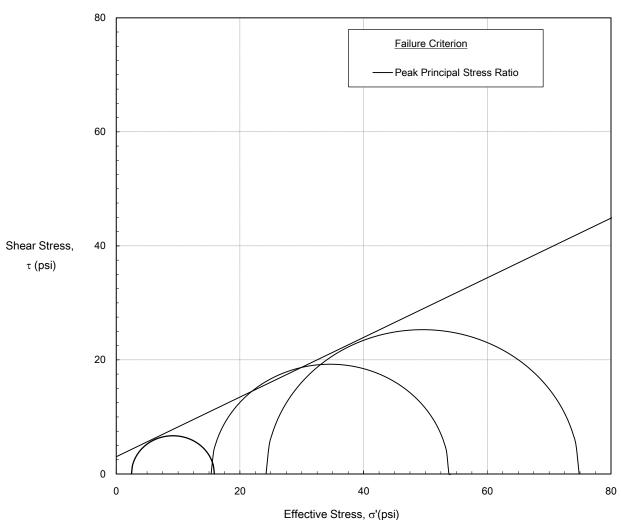

Jeffrey A. Kuhn , Ph.D., P.E., 4/27/2018

Analysis & Quality Review/Date

1 of 5



Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-104 (33' - 35') TRI Log #: 36635.2 Test Method: ASTM D4767 Mod

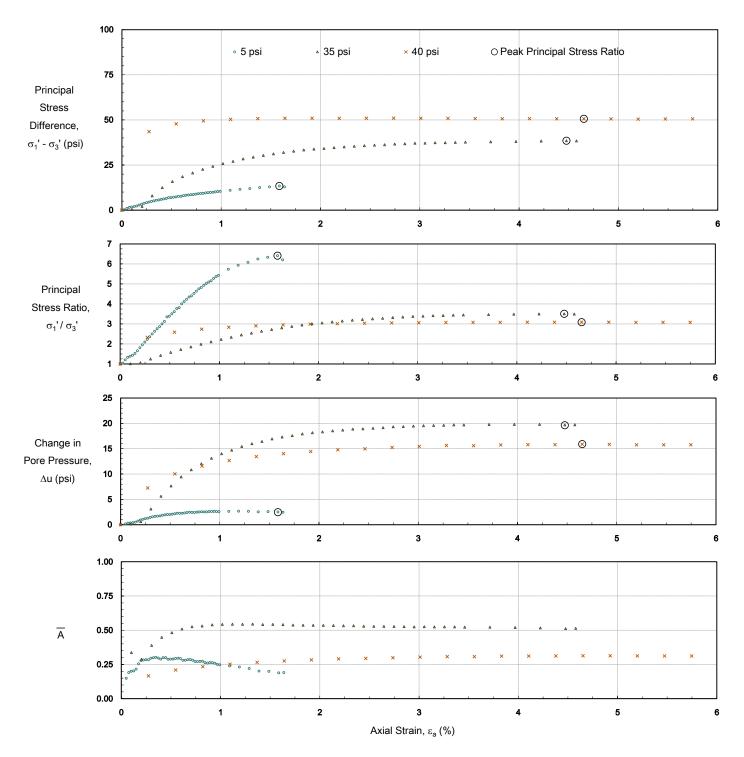



Modified Mohr-Coulomb

Failure Criterion: Peak Principal Stress	Difference, $(\sigma_1' - \sigma_3')_{max}$	Ratio, (σ ₁ '/σ ₃ ') _{max}
Effective Friction Angle (deg)	-	27.6
Effective Cohesion (psi)	-	3.0



Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-104 (33' - 35') TRI Log #: 36635.2 Test Method: ASTM D4767 Mod




Mohr-Coulomb

Failure Criterion: Peak Principal Stress	Difference, $(\sigma_1' - \sigma_3')_{max}$	Ratio, (σ ₁ '/σ ₃ ') _{max}
Effective Friction Angle (deg)	-	27.6
Effective Cohesion (psi)	-	3.0



Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-104 (33' - 35') TRI Log #: 36635.2 Test Method: ASTM D4767 Mod



4 of 5



Client: Arias & Associates Project: Mitchell Lake Wetland Sample: B-104 (33' - 35') TRI Log #: 36635.2 Test Method: ASTM D4767 Mod

5 psi 5 psi 0 0 Volume Change (ml) Volume Change (ml) 1 1 2 2 3 3 0.1 0 10 20 30 40 1 10 100 1000 10000 Time (minutes) Root Time (square root of minutes) 35 psi 35 psi 0 0 Volume Change (ml) Volume Change (ml) 2 2 4 4 6 6 8 8 0.1 10 100 1000 10000 0 10 20 1 30 40 Root Time (square root of minutes) Time (minutes) 40 psi 40 psi 0 0 0.5 0.5 Volume Change (ml) Volume Change (ml) 1 1 1.5 1.5 2 2 2.5 2.5 3 3 3.5 3.5 4 4 0.1 1 10 100 1000 10000 0 10 20 30 40 Time (minutes) Root Time (square root of minutes)

### Consolidation

5 of 5



Client: Arias & Associates Project: Mitchel Lake Wetland Sample: B-106 (23' - 25') TRI Log #: 36618.6 Test Method: ASTM D4767

Specimens				
Identification	-	-	-	
Depth/Elev. (ft)	-	-	-	
Eff. Consol. Stress (psi)	16.0	21.0	25.0	
Initial Specime	n Propert	ies		
Avg. Diameter (in)	1.39	1.44	1.48	
Avg. Height (in)	3.48	2.95	3.34	
Avg. Water Content (%)	15.7	17.0	17.1	
Bulk Density (pcf)	126.0	131.7	129.8	
Dry Density (pcf)	108.9	112.6	110.8	
Saturation (%)	77.5	92.1	88.8	
Void Ratio, n	0.55	0.50	0.52	
Specific Gravity (Assumed)	2.70	2.70	2.70	
Total Back-Pressure (psi)	54.0	54.6	54.5	
B-Value, End of Saturation	0.96	0.95	0.97	

Test Setup		
Specimen Condition	Undisturbed / Intact	
Specimen Preparation	Trimmed	
Mounting Method	Wet	
Consolidation	Isotropic	

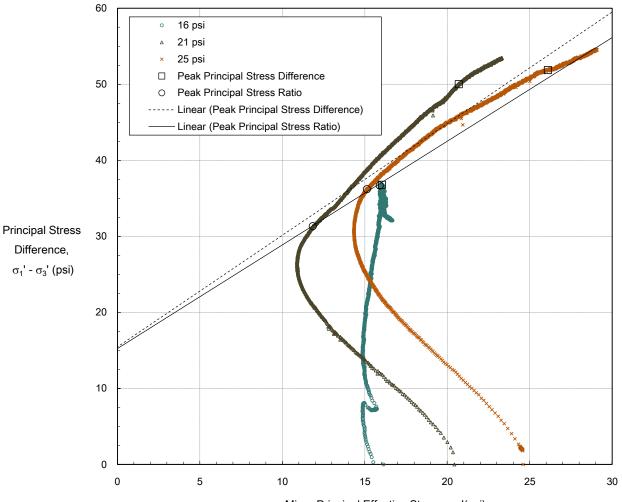
Post-Consolidation / Pre-Shear			
Void Ratio         0.52         0.46         0.49			
Area (in ² )	1.51	1.61	1.70

Shear / Post-Shear			
Avg. Water Content (%)	18.1	19.6	18.5
Rate of Strain (%/hr)	0.50	0.50	0.50

At Failure						
Failure Criterion: Peak Principal Stress	Differe	ence, (σ ₁ '·	-σ ₃ ') _{max}	Rat	io, (σ ₁ '/σ ₃	') _{max}
Axial Strain at Failure (%), $\epsilon_{a,f}$	8.7	15.0	15.0	8.3	4.7	4.5
Minor Effective Stress (psi), $\sigma_{3'f}$	16.0	20.7	26.1	15.9	11.8	15.1
Principal Stress Difference (psi), $(\sigma_1 - \sigma_3)_f$	36.8	50.0	51.9	36.7	31.3	36.2
Pore Water Pressure, ∆u _f (psi)	0.1	-0.3	-1.5	0.2	8.6	9.5
Major Effective Stress (psi), σ ₁ ' _f	52.8	70.7	78.0	52.6	43.2	51.3
Secant Friction Angle (degrees)	32.3	33.2	29.9	32.4	34.7	33.0
Effective Friction Angle (degrees)		25.0			23.9	
Effective Cohesion (psi)		4.9			5.0	

Please note that the presented M-C parameters are based on a linear regression in modified stress space, across all assigned effective consolidation stresses. This fit does not purported to capture typical curvature of envelopes that may, in particular, be observed across broader range in effective stresses. Please note that the stresses associated with peak principal stress ratio and peak principal stress difference are presented in tabular form on the first page of the report. There are alternate interpretations to theses two failure criterion including but not limited to strain compatibility and post-peak.

Jeffrey A. Kuhn , Ph.D., P.E., 4/27/2018


Analysis & Quality Review/Date

1 of 5

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

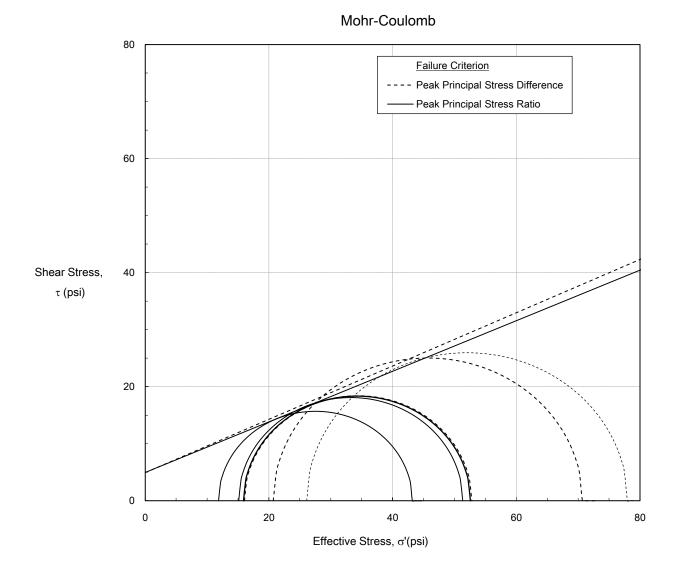


Client: Arias & Associates Project: Mitchel Lake Wetland Sample: B-106 (23' - 25') TRI Log #: 36618.6 Test Method: ASTM D4767



Modified Mohr-Coulomb

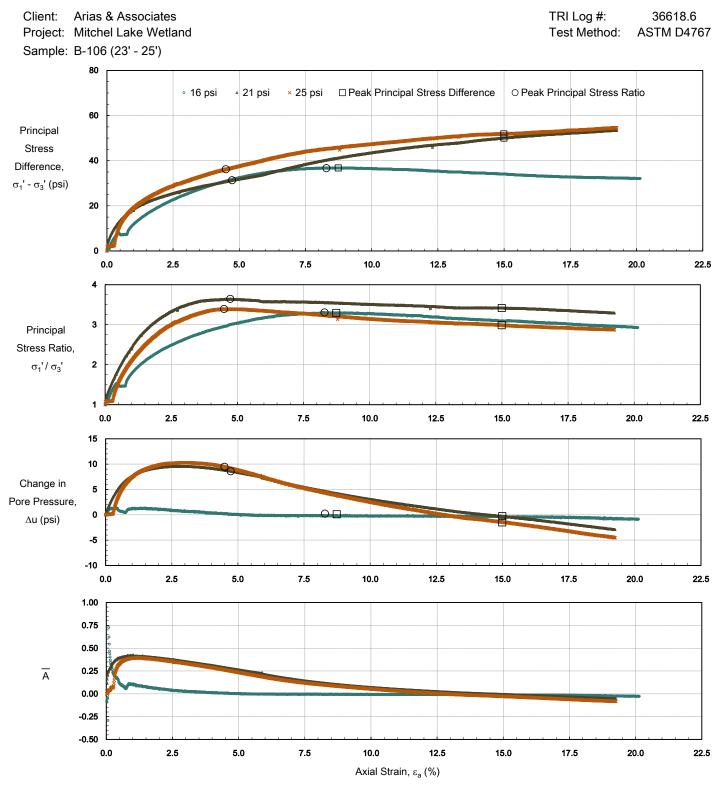
Minor Principal Effective Stress ,  $\sigma_{\!3}{}^{\prime}(\text{psi})$ 


Failure Criterion: Peak Principal Stress	Difference, $(\sigma_1' - \sigma_3')_{max}$	Ratio, $(\sigma_1'/\sigma_3')_{max}$
Effective Friction Angle (deg)	25.0	23.9
Effective Cohesion (psi)	4.9	5.0

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

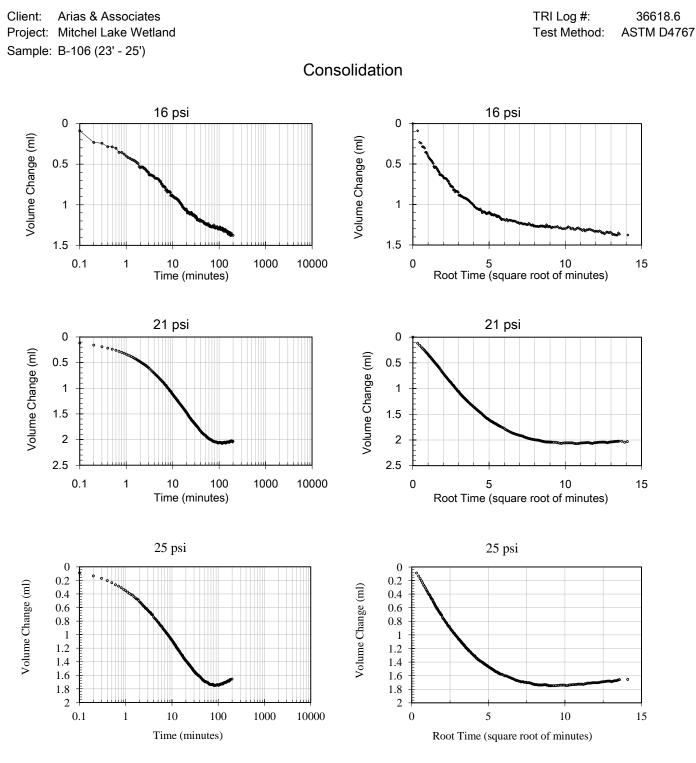


Client: Arias & Associates Project: Mitchel Lake Wetland Sample: B-106 (23' - 25')


TRI Log #: 36618.6 Test Method: **ASTM D4767** 



Failure Criterion: Peak Principal Stress	Difference, $(\sigma_1'-\sigma_3')_{max}$	Ratio, (σ ₁ '/σ ₃ ') _{max}
Effective Friction Angle (deg)	25.0	23.9
Effective Cohesion (psi)	4.9	5.0


industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI. The testing herein is based upon accepted indust for nor makes claim as to the final use and purpo



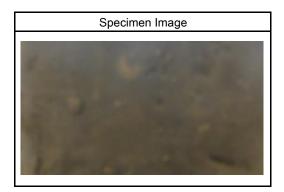


4 of 5 The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.





5 of 5 The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.


#### APPENDIX H: HYDRAULIC CONDUCTIVITY

#### Hydraulic Conductivity

Project: Mitchell Lake Wetland Sample ID: B-101 (8 - 10) 1.E-04 Hydraulic Conductivity (cm/sec) 1.E-05  $\square$ Ð Ð 1.E-06 1.E-07 1.E-08 1.E-09 100 200 300 400 500 0 Time (min)

Arias & Associates

Client:

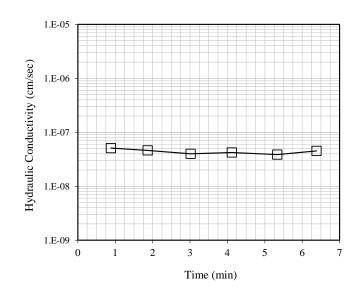


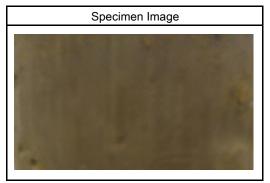
TRI Log #:		35.3 M D5084
Test Method:	ASTM D5084 Method C	
Initial Valu	les	
Sample Condition		Undisturbed
Diameter (in)		2.66
Height (in)		1.60
Initial Mass (g)		276.4
Sample Area (in ² )		5.56
Water Content (%)		23.8
Total Unit Weight (pcf)		118.3
Dry Unit Weight (pcf)		95.5
Specific Gravity (Assumed)		2.65
Degree of Saturation		86.4
Void Ratio		0.73
Porosity		0.42
1 Pore Volume (cc)		61.6
Eff. Confining Stress (psi)		6.0
B-Value Prior to Permeation		0.99

Time	Hydraulic Conductivity, K at 20° C
Min	cm/s
83.3	4.2E-06
207.0	2.2E-06
308.0	3.2E-06
384.0	1.9E-06
Average, Last 4 Readings	2.8E-06

Jeffrey A. Kuhn, Ph.D., P.E., 4/13/2018

Analysis & Quality Review/Date


Page 1 of 1


The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

#### Hydraulic Conductivity

Client:Arias & AssociatesProject:Mitchell Lake WetlandSample ID:B-105 (8 - 10)





TRI Log #:		18.4 FM D5084
Test Method:	Met	hod F
Initial Valu	les	
Sample Condition		Undisturbed
Diameter (in)		2.72
Height (in)		1.59
Initial Mass (g)		291.7
Sample Area (in ² )		5.82
Water Content (%)		20.4
Total Unit Weight (pcf)		119.7
Dry Unit Weight (pcf)		99.4
Specific Gravity (Assumed)		2.65
Degree of Saturation		81.6
Void Ratio		0.66
Porosity		0.40
1 Pore Volume (cc)		60.6
Eff. Confining Stress (psi)		21.0
B-Value Prior to Permeation		0.97

Time	Hydraulic Conductivity, K at 20° C
Min	cm/s
3.0	4.0E-08
4.1	4.2E-08
5.3	3.9E-08
6.4	4.5E-08
Average, Last 2 Readings	4.2E-08

Jeffrey A. Kuhn, Ph.D., P.E., 4/27/2018

Analysis & Quality Review/Date

Page 1 of 1

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested. TRI neither accepts responsibility for nor makes claim as to the final use and purpose of the material. TRI observes and maintains client confidentiality. TRI limits reproduction of this report, except in full, without prior approval of TRI.

TRI ENVIRONMENTAL, INC.

APPENDIX I: ASFE INFORMATION – GEOTECHNICAL REPORT

# Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

#### Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

#### **Read the Full Report**

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

#### A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.* 

#### **Subsurface Conditions Can Change**

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

#### Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

#### A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical* engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

#### A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

#### **Do Not Redraw the Engineer's Logs**

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.* 

#### Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

#### **Read Responsibility Provisions Closely**

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

#### **Geoenvironmental Concerns Are Not Covered**

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.* 

#### **Obtain Professional Assistance To Deal with Mold**

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

#### Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/THE BEST PEOPLE ON EARTH exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with your ASFE-member geotechnical engineer for more information.



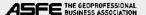
8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be commiting negligent or intentional (fraudulent) misrepresentation.

#### APPENDIX J: PROJECT QUALITY ASSURANCE

## A Message to Owners

Construction materials engineering and testing (CoMET) consultants perform qualityassurance (QA) services to evaluate the degree to which constructors are achieving the specified conditions they're contractually obligated to achieve. Done right, QA can save you time and money; prevent unanticipatedconditions claims, change orders, and disputes; and reduce short-term and long-term risks, especially by detecting molehills before they grow into mountains.


Done right, QA can save you time and money; prevent claims and disputes; and reduce risks. Many owners don't do QA right because they follow bad advice.

Many owners don't do QA right because they follow bad advice; e.g., "CoMET consultants are all the same. They all have accredited facilities and certified personnel. Go with the low bidder." But there's no such thing as a standard QA scope of service, meaning that – to bid low – each interested firms *must* propose the cheapest QA service it can live with, jeopardizing service quality and aggravating risk for the entire project team. Besides, the advice is based on misinformation. Fact: *Most CoMET firms are not accredited*, and the quality of those that are varies significantly. Accreditation – which is important – nonetheless means that a facility met an accrediting body's minimum criteria. Some firms practice at a much higher level; others just barely scrape by. And what an accrediting body typically evaluates – management, staff, facilities, and equipment – can change substantially before the next review, two, three, or more years from now.

Most CoMET firms are not accredited. It's dangerous to assume CoMET personnel are certified.

Fact: *It's dangerous to assume CoMET personnel are certified.* Many have no credentials at all; some are certified by organizations of questionable merit, while others have a valid certification, but *not* for the services they're assigned.

Some CoMET firms – the "low-cost providers" – *want* you to believe that price is the only difference between QA providers. It's not, of course. Firms that sell low price typically lack the facilities, equipment, personnel, and insurance quality-oriented firms invest in to achieve the reliability concerned owners need to achieve quality in quality assurance.



8811 Colesville Road Suite G106 Silver Spring, Maryland 20910 Voice: 301.565.2733 Fax: 301.589.2017 E-mail: info@asfe.org Internet: www.asfe.org



#### PROJECT QUALITY ASSURANCE

Firms that sell low price typically lack the facilities, equipment, personnel, and insurance quality-oriented firms invest in to achieve the reliability concerned owners need to achieve quality in quality assurance.



To derive maximum value from your investment in QA, require the CoMET firm's project manager to serve actively on the project team from beginning to end, a level of service that's relatively inexpensive and can pay huge dividends. During the project's planning and design stages, experienced CoMET professionals can help the design team develop uniform technical specifications and establish appropriate observation, testing, and instrumentation procedures and protocols. They can also analyze plans and specs much as constructors do, looking for the little errors, omissions, conflicts, and ambiguities that often become the basis for big extras and big claims. They can provide guidance about operations that need closer review than others, because of their criticality or potential for error or abuse. They can also relate their experience with the various constructors that have expressed interest in your project.

## To derive maximum value, require the project manager to serve actively on the project team from beginning to end.

CoMET consultants' construction-phase QA services focus on two distinct issues: those that relate to geotechnical engineering and those that relate to the other elements of construction.

The geotechnical issues are critically important because they are essential to the "observational method" geotechnical engineers use to significantly reduce the amount of sampling they'd otherwise require. They apply the observational method by developing a sampling plan for a project, and then assigning field representatives to ensure samples are properly obtained, packaged, and transported. The engineers review the samples and, typically, have them tested in their own laboratories. They use the information they derive to characterize the site's subsurface and develop *preliminary* recommendations for the structure's foundations and for the specifications of various "geo" elements, like excavations, site grading, foundationbearing grades, and roadway and parking-lot preparation and surfacing.

Geotechnical engineers cannot finalize their recommendations until they or their field representatives are on site to observe what's excavated to verify that the subsurface conditions the engineers predicted are those that actually exist.

When unanticipated conditions are observed, recommendations and/or specifications should be modified.

Responding to client requests, many geotechnical-engineering firms have expanded their field-services mix, so they're able to perform overall construction QA, encompassing – in addition to geotechnical issues – reinforced concrete, structural steel, welds, fireproofing, and so on. Unfortunately, that's caused some confusion. Believing that all CoMET consultants are alike, some owners take bids for the overall CoMET package, including the geotechnical field observation. *Entrusting geotechnical field observation to someone other than the geotechnical engineer of record (GER) creates a significant risk.* 

#### PROJECT QUALITY ASSURANCE

Geotechnical engineers cannot finalize their recommendations until they are on site to verify that the subsurface conditions they predicted are those that actually exist. Entrusting geotechnical field observation to someone other than the geotechnical engineer of record (GER) creates a significant risk.

> GERs have developed a variety of protocols to optimize the quality of their field-observation procedures. Quality-focused GERs meet with their field representatives before they leave for a project site, to brief them on what to look for and where, when, and how to look. (No one can duplicate this briefing, because no one else knows as much about a project's geotechnical issues.) And once they arrive at a project site, the field representatives know to maintain timely, effective communication with the GER, because that's what the GER has trained them to do. By contrast, it's extremely rare for a different firm's field personnel to contact the GER, even when they're concerned or confused about what they observe, because they regard the GER's firm as "the competition."

Divorcing the GER from geotechnical field operations is almost always penny-wise and pound-foolish. Still, because owners are given bad advice, it's commonly done, helping to explain why *"geo" issues are the number-one source of construction-industry claims and disputes.* 

Divorcing the GER from geotechnical field operations is almost always penny-wise and pound-foolish, helping to explain why "geo" issues are the number-one source of constructionindustry claims and disputes.

> To derive the biggest bang for the QA buck, identify three or even four quality-focused CoMET consultants. (If you don't know any,

use the "Find a Geoprofessional" service available free at www.asfe.org.) Ask about the firms' ongoing and recent projects and the clients and client representatives involved; *insist upon receiving verification of all claimed accreditations, certifications, licenses, and insurance coverages.* 

# Insist upon receiving verification of all claimed accreditations, certifications, licenses, and insurance coverages.

Once you identify the two or three most qualified firms, meet with their representatives, preferably at their own facility, so you can inspect their laboratory, speak with management and technical staff, and form an opinion about the firm's capabilities and attitude.

Insist that each firm's designated project manager participate in the meeting. You will benefit when that individual is a seasoned QA professional familiar with construction's rough-and-tumble. Ask about others the firm will assign, too. There's no substitute for experienced personnel who are familiar with the codes and standards involved and know how to:

- read and interpret plans and specifications;
- perform the necessary observation, inspection, and testing;
- · document their observations and findings;
- interact with constructors' personnel; and
- respond to the unexpected.

*Important:* Many of the services CoMET QA field representatives perform – like observing operations and outcomes – require the good judgment afforded by extensive training and experience, especially in situations where standard operating procedures do not apply. You need to know who will be exercising that judgment: a 15-year "veteran" or a rookie?

## Many of the services CoMET QA field representatives perform require good judgment.

Also consider the tools CoMET personnel use. Some firms are passionate about proper calibration; others, less so. Passion is a good thing! Ask to see the firm's calibration records. If the firm doesn't have any, or if they are not current, be cautious. *You cannot trust test results derived using equipment that may be out of calibration*. Also ask a firm's representatives about their reporting practices, including report distribution, how they handle notifications of nonconformance, and how they resolve complaints.

### Scope flexibility is needed to deal promptly

#### with the unanticipated.

For financing purposes, some owners require the constructor to pay for CoMET services. Consider an alternative approach so you don't convert the constructor into the CoMET consultant's client. If it's essential for you to fund QA via the constructor, have the CoMET fee included as an allowance in the bid documents. This arrangement ensures that you remain the CoMET consultant's client, and it prevents the CoMET fee from becoming part of the constructor's bid-price competition. (Note that the International Building Code (IBC) requires the owner to pay for Special Inspection (SI) services commonly performed by the CoMET consultant as a service separate from QA, to help ensure the SI services' integrity. Because failure to comply could result in denial of an occupancy or use permit, having a contractual agreement that conforms to the IBC mandate is essential.)

If it's essential for you to fund QA via the constructor, have the CoMET fee included as an allowance in the bid documents. Note, too, that the International Building Code (IBC) requires the owner to pay for Special Inspection (SI) services.

CoMET consultants can usually quote their fees as unit fees, unit fees with estimated total (invoiced on a unit-fee basis), or lumpsum (invoiced on a percent-completion basis referenced to a schedule of values). No matter which method is used, estimated quantities need to be realistic. Some CoMET firms lower their total-fee estimates by using quantities they know are too low and then request change orders long before QA is complete.

Once you and the CoMET consultant settle on the scope of service and fee, enter into a written contract. Established CoMET firms have their own contracts; most owners sign them. Some owners prefer to use different contracts, but that can be a mistake when the contract was prepared for construction services. *Professional services are different*. Wholly avoidable problems occur when a contract includes provisions that don't apply to the services involved and fail to include those that do.

#### Some owners create wholly avoidable

problems by using a contract prepared for construction services.

#### PROJECT QUALITY ASSURANCE



This final note: CoMET consultants perform QA for owners, not constructors. While constructors are commonly allowed to review QA reports as a *courtesy*, you need to make it clear that constructors do *not* have a legal right to rely on those reports; i.e., if constructors want to forgo their own observation and testing and rely on results derived from a scope created to meet *only* the needs of the owner, they must do so at their own risk. In all too many cases where owners have not made that clear, some constructors have alleged that they did have a legal right to rely on QA reports and, as a result, the CoMET consultant – not they - are responsible for their failure to deliver what they contractually promised to provide. The outcome can be delays and disputes that entangle you and all other principal project participants. Avoid that. Rely on a CoMET firm that possesses the resources and attitude needed to manage this and other risks as an element of a quality-focused service. Involve the firm early. Keep it engaged. And listen to what the CoMET consultant says. A good CoMET consultant can provide great value.

For more information, speak with your ASFE-Member CoMET consultant or contact ASFE directly.



ASFE THE GEOPROFESSIONAL BUSINESS ASSOCIATION

8811 Colesville Road Suite G106 Silver Spring, Maryland 20910 Voice: 301.565.2733 Fax: 301.589.2017 E-mail: info@asfe.org Internet: www.asfe.org